Table 1 Silicon photonic MEMS device performance in comparison with state-of-the art free carrier dispersion (FCD), thermo-optic (TO), plasmonic-organic hybrid (POH), lithium niobate (LiNbO3) and liquid crystal (LC) devices, where silicon photonic MEMS uniquely provide a compact footprint, low insertion loss, low power consumption and broad optical bandwidth

From: Integrated silicon photonic MEMS

 

Property/performance

Photonic device

Footprint (incl. cont.) [μm × μm]

Insertion loss [dB]

Drive voltage [V]

Power cons. [nW]

Optical bandwidth [nm]

Response time [μs]

MEMS tunable coupler

78 × 78

0.5

27

a

30

a

MEMS switch

65 × 62

a

23

a

1500–1600

<1

MEMS ring resonator

75 × 45

a

27

a

0.26

a

MEMS phase shifter

100 × 45

0.33

20

<1b

50f

2c

TO phase shifter36

109 × 21

1.23

0.8

2560

1520–1600

<34.8

FCD MZI phase shifter68

2100 × 2000

6.9

0.5

203·103

Broadband

<0.001

POH phase shifter39

29 × 10

12

3

2.4·106d

Broadband

<0.001

LiNbO3 phase shifter69

20,000 × 500

0.5

0.37

26·103e

Broadband

<0.001

LC phase shifter70

80 × 40

0.83

10

Broadband

1000

  1. MEMS microelectromechanical systems, FCD free carrier dispersion, MZI Mach‒Zehnder interferometer, TO thermo-optic, POH plasmonic-organic hybrid
  2. aConclusive experimental data not reported due to limited availability of dedicated test structures
  3. bMeasured dynamic π phase shift modulation at 1 kHz
  4. cMeasured mechanical resonance frequency
  5. dModulation at 40 Gb/s with 60 fJ/bit
  6. eModulation at 70 Gb/s with 0.37 fJ/bit
  7. fBased on the optical bandwidth corresponding to a phase shift within [1.5π, 2.5π]