Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic tripartite construct of interregional engram circuits underlies forgetting of extinction memory

Abstract

Fear extinction allows for adaptive control of learned fear responses but often fails, resulting in a renewal or spontaneous recovery of the extinguished fear, i.e., forgetting of the extinction memory readily occurs. Using an activity-dependent neuronal labeling strategy, we demonstrate that engram neurons for fear extinction memory are dynamically positioned in the medial prefrontal cortex (mPFC), basolateral amygdala (BLA), and ventral hippocampus (vHPC), which constitute an engram construct in the term of directional engram synaptic connectivity from the BLA or vHPC to mPFC, but not that in the opposite direction, for retrieval of extinction memory. Fear renewal or spontaneous recovery switches the extinction engram construct from an accessible to inaccessible state, whereas additional extinction learning or optogenetic induction of long-term potentiation restores the directional engram connectivity and prevents the return of fear. Thus, the plasticity of engram construct underlies forgetting of extinction memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Retrieval of extinction memory recruits a subset of neurons as extinction engram.
Fig. 2: Bidirectional manipulation of extinction engram neurons correspondingly dictates retrieval of extinction memory.
Fig. 3: Optogenetic stimulation of BLA or vHPC extinction engram neurons induces mPFC extinction engram neuronal activation, while inhibition of BLA or vHPC extinction engram neurons suppresses the activation of mPFC extinction engram neurons induced by extinction retrieval.
Fig. 4: BLA and vHPC→mPFC engram circuits but not the opposite routes are required for extinction retrieval.
Fig. 5: Dynamics of engram connectivity correlate instability of extinction memory.
Fig. 6: Engram-specific optical LTP enables retrieval of extinction memory.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions of the present study are present in the main paper and/or the Supplementary Materials. Additional data are available from the authors upon request.

References

  1. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.

    CAS  PubMed  Google Scholar 

  2. Maren S. Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci. 2001;24:897–931.

    CAS  PubMed  Google Scholar 

  3. Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annu Rev Psychol. 2005;56:207–34.

    PubMed  Google Scholar 

  4. Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev. 2010;90:419–63.

    CAS  PubMed  Google Scholar 

  5. Izquierdo I, Furini CR, Myskiw JC. Fear memory. Physiol Rev. 2016;96:695–750.

    PubMed  Google Scholar 

  6. Lebois LAM, Seligowski AV, Wolff JD, Hill SB, Ressler KJ. Augmentation of extinction and inhibitory learning in anxiety and trauma-related disorders. Annu Rev Clin Psychol. 2019;15:257–84.

    PubMed  PubMed Central  Google Scholar 

  7. Vervliet B, Craske MG, Hermans D. Fear extinction and relapse: state of the art. Annu Rev Clin Psychol. 2013;9:215–48.

    PubMed  Google Scholar 

  8. Bouton ME, Maren S, McNally GP. Behavioral and neurobiological mechanisms of Pavlovian and instrumental extinction learning. Physiol Rev. 2021;101:611–81.

    PubMed  Google Scholar 

  9. Maren S, Phan KL, Liberzon I. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci. 2013;14:417–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu C, Krabbe S, Grundemann J, Botta P, Fadok JP, Osakada F, et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell. 2016;167:961–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li WG, Wu YJ, Gu X, Fan HR, Wang Q, Zhu JJ, et al. Input associativity underlies fear memory renewal. Natl Sci Rev. 2021;8:nwab004.

    PubMed  PubMed Central  Google Scholar 

  12. Bouton ME, Westbrook RF, Corcoran KA, Maren S. Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol Psychiatry. 2006;60:352–60.

    PubMed  Google Scholar 

  13. Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol. 2012;63:129–51.

    PubMed  PubMed Central  Google Scholar 

  14. Dunsmoor JE, Niv Y, Daw N, Phelps EA. Rethinking extinction. Neuron. 2015;88:47–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hong I, Song B, Lee S, Kim J, Kim J, Choi S. Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. Eur J Neurosci. 2009;30:2089–99.

    PubMed  Google Scholar 

  16. An B, Kim J, Park K, Lee S, Song S, Choi S. Amount of fear extinction changes its underlying mechanisms. Elife. 2017;6:e25224.

    PubMed  PubMed Central  Google Scholar 

  17. Choi DI, Kim J, Lee H, Kim JI, Sung Y, Choi JE, et al. Synaptic correlates of associative fear memory in the lateral amygdala. Neuron. 2021;109:2717–26.

    CAS  PubMed  Google Scholar 

  18. Ryan TJ, Frankland PW. Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci. 2022;23:173–86.

    CAS  PubMed  Google Scholar 

  19. Josselyn SA, Kohler S, Frankland PW. Finding the engram. Nat Rev Neurosci. 2015;16:521–34.

    CAS  PubMed  Google Scholar 

  20. Tonegawa S, Liu X, Ramirez S, Redondo R. Memory engram cells have come of age. Neuron. 2015;87:918–31.

    CAS  PubMed  Google Scholar 

  21. Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science. 2020;367:eaaw4325.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Abdou K, Shehata M, Choko K, Nishizono H, Matsuo M, Muramatsu SI, et al. Synapse-specific representation of the identity of overlapping memory engrams. Science. 2018;360:1227–31.

    CAS  PubMed  Google Scholar 

  23. Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015;348:1007–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39.

    CAS  PubMed  Google Scholar 

  25. Bocchio M, Nabavi S, Capogna M. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron. 2017;94:731–43.

    CAS  PubMed  Google Scholar 

  26. Choi JH, Sim SE, Kim JI, Choi DI, Oh J, Ye S, et al. Interregional synaptic maps among engram cells underlie memory formation. Science. 2018;360:430–5.

    CAS  PubMed  Google Scholar 

  27. Lacagnina AF, Brockway ET, Crovetti CR, Shue F, McCarty MJ, Sattler KP, et al. Distinct hippocampal engrams control extinction and relapse of fear memory. Nat Neurosci. 2019;22:753–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang G, Xie H, Wang L, Luo W, Wang Y, Jiang J, et al. Switching from fear to no fear by different neural ensembles in mouse retrosplenial cortex. Cereb Cortex. 2019;29:5085–97.

    PubMed  Google Scholar 

  29. Zhang X, Kim J, Tonegawa S. Amygdala reward neurons form and store fear extinction memory. Neuron. 2020;105:1077–93.

    CAS  PubMed  Google Scholar 

  30. Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science. 2017;357:1149–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu L, et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci. 2019;22:460–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Roy DS, Arons A, Mitchell TI, Pignatelli M, Ryan TJ, Tonegawa S. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature. 2016;531:508–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron. 2013;78:773–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science. 2007;317:1230–3.

    CAS  PubMed  Google Scholar 

  35. Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature. 2016;534:115–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho JH, Deisseroth K, Bolshakov VY. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron. 2013;80:1491–507.

    CAS  PubMed  Google Scholar 

  37. Senn V, Wolff SB, Herry C, Grenier F, Ehrlich I, Grundemann J, et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron. 2014;81:428–37.

    CAS  PubMed  Google Scholar 

  38. Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Whittle N, et al. Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv. 2015;1:e1500251.

    PubMed  PubMed Central  Google Scholar 

  39. Davis P, Zaki Y, Maguire J, Reijmers LG. Cellular and oscillatory substrates of fear extinction learning. Nat Neurosci. 2017;20:1624–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Klavir O, Prigge M, Sarel A, Paz R, Yizhar O. Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nat Neurosci. 2017;20:836–44.

    CAS  PubMed  Google Scholar 

  41. Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ. Induction of fear extinction with hippocampal-infralimbic BDNF. Science. 2010;328:1288–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Q, Wang Q, Song XL, Jiang Q, Wu YJ, Li Y, et al. Fear extinction requires ASIC1a-dependent regulation of hippocampal-prefrontal correlates. Sci Adv. 2018;4:eaau3075.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Murray AJ, Sauer JF, Riedel G, McClure C, Ansel L, Cheyne L, et al. Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nat Neurosci. 2011;14:297–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. Independent optical excitation of distinct neural populations. Nat Methods. 2014;11:338–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.

    CAS  PubMed  Google Scholar 

  46. Frankland PW, Josselyn SA, Kohler S. The neurobiological foundation of memory retrieval. Nat Neurosci. 2019;22:1576–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci USA. 2011;108:7595–7600.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. 2014;511:348–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P. Ultrafast optogenetic control. Nat Neurosci. 2010;13:387–92.

    CAS  PubMed  Google Scholar 

  50. Lee S, Ahmed T, Lee S, Kim H, Choi S, Kim DS, et al. Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice. Nat Neurosci. 2011;15:308–14.

    PubMed  Google Scholar 

  51. Baek J, Lee S, Cho T, Kim SW, Kim M, Yoon Y, et al. Neural circuits underlying a psychotherapeutic regimen for fear disorders. Nature. 2019;566:339–43.

    CAS  PubMed  Google Scholar 

  52. Salinas-Hernandez XI, Vogel P, Betz S, Kalisch R, Sigurdsson T, Duvarci S. Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes. Elife. 2018;7:e38818.

    PubMed  PubMed Central  Google Scholar 

  53. Luo R, Uematsu A, Weitemier A, Aquili L, Koivumaa J, McHugh TJ, et al. A dopaminergic switch for fear to safety transitions. Nat Commun. 2018;9:2483.

    PubMed  PubMed Central  Google Scholar 

  54. Laing PAF, Harrison BJ. Safety learning and the Pavlovian conditioned inhibition of fear in humans: Current state and future directions. Neurosci Biobehav Rev. 2021;127:659–74.

    PubMed  Google Scholar 

  55. Marek R, Sun Y, Sah P. Neural circuits for a top-down control of fear and extinction. Psychopharmacology. 2019;236:313–20.

    CAS  PubMed  Google Scholar 

  56. Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat Neurosci. 2016;19:1636–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A. Switching on and off fear by distinct neuronal circuits. Nature. 2008;454:600–6.

    CAS  PubMed  Google Scholar 

  58. Marek R, Jin J, Goode TD, Giustino TF, Wang Q, Acca GM, et al. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci. 2018;21:384–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramanathan KR, Jin J, Giustino TF, Payne MR, Maren S. Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction. Nat Commun. 2018;9:4527.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Miao He at Fudan University for kindly providing the H2B-GFPflox mice used in the current study. This study was supported by grants from the Ministry of Science and Technology China Brain Initiative Project (2021ZD0202802), the National Natural Science Foundation of China (31930050, 32071023, 31900701, and 81903583), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX05), the Science and Technology Commission of Shanghai Municipality (18JC1420302), the Shanghai Jiao Tong University College of Basic Medical Sciences (YCTSQN2021002), and innovative research team of high-level local universities in Shanghai. Dr. Yan-Jiao Wu is awarded the fellowship of China Postdoctoral Science Foundation (2021T140456).

Author information

Authors and Affiliations

Contributions

XG, T-LX, and W-GL conceived the project, designed the experiments, and interpreted the results. XG performed the majority of behavioral experiments, animal surgery, immunohistochemistry, and data analysis. Y-JW, ZZ, J-JZ, QW, XY, Z-JL, Z-HJ, MX, QJ, and YL assisted with some of the behavioral experiments and conducted viral injections. XG, Y-JW, X-RW, and W-GL performed slice recording and data analysis. N-JX, M-XZ, L-YW, and FJ contributed to data interpretation and experimental design. XG, M-XZ, L-YW, T-LX, and W-GL wrote the manuscript with contributions from all authors. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fan Jiang, Tian-Le Xu or Wei-Guang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Wu, YJ., Zhang, Z. et al. Dynamic tripartite construct of interregional engram circuits underlies forgetting of extinction memory. Mol Psychiatry 27, 4077–4091 (2022). https://doi.org/10.1038/s41380-022-01684-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-022-01684-7

This article is cited by

Search

Quick links