Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Social isolation and the brain: effects and mechanisms

Abstract

An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of studies on social isolation.
Fig. 2
Fig. 3: Major brain regions and connectivities affected by early-life SI in humans and functional circuits in which these regions are involved.
Fig. 4: Effects of SI on oligodendrocyte progenitor cell (OPC) differentiation and oligodendrocyte (OL) maturation.

Similar content being viewed by others

References

  1. Baumeister RF, Leary MR. The need to belong - desire for interpersonal attachments as a fundamental human-motivation. Psychol Bull. 1995;117:497–529.

    Article  CAS  Google Scholar 

  2. Insel TR, Young LJ. The neurobiology of attachment. Nat Rev Neurosci. 2001;2:129–36.

    Article  CAS  Google Scholar 

  3. Cohen S. Social relationships and health. Am Psychol. 2004;59:676–84.

    Article  Google Scholar 

  4. Kawachi I, Berkman LF. Social ties and mental health. J Urban Health. 2001;78:458–67.

    Article  CAS  Google Scholar 

  5. Pietromonaco PR, Collins NL. Interpersonal mechanisms linking close relationships to health. Am Psychol. 2017;72:531–42.

    Article  Google Scholar 

  6. Cacioppo JT, Hawkley LC, Norman GJ, Berntson GG. Social isolation. Ann N. Y Acad Sci. 2011;1231:17–22.

    Article  Google Scholar 

  7. Pancani L, Marinucci M, Aureli N, Riva P. Forced social isolation and mental health: a study on 1,006 Italians under COVID-19 lockdown. Front Psychol. 2021;12:663799.

    Article  Google Scholar 

  8. Msherghi A, Alsuyihili A, Alsoufi A, Ashini A, Alkshik Z, Alshareea E, et al. Mental health consequences of lockdown during the COVID-19 pandemic: a cross-sectional study. Front Psychol. 2021;12:605279.

    Article  Google Scholar 

  9. De France K, Hancock GR, Stack DM, Serbin LA, Hollenstein T. The mental health implications of COVID-19 for adolescents: follow-up of a four-wave longitudinal study during the pandemic. Am Psychol. 2021;77:85–99.

    Article  Google Scholar 

  10. Bussieres EL, Malboeuf-Hurtubise C, Meilleur A, Mastine T, Herault E, Chadi N, et al. Consequences of the COVID-19 Pandemic on children’s mental health: a meta-analysis. Front Psychiatry. 2021;12:691659.

    Article  Google Scholar 

  11. Shuffrey LC, Firestein MR, Kyle MH, Fields A, Alcantara C, Amso D, et al. Association of birth during the COVID-19 Pandemic with neurodevelopmental status at 6 months in infants with and without in utero exposure to maternal SARS-CoV-2 infection. JAMA Pediatr. 2022;176:e215563.

  12. Deoni SC, Beauchemin J, Volpe A, Da Sa V, Consortium R. Impact of the COVID-19 Pandemic on Early Child Cognitive Development: Initial Findings in a Longitudinal Observational Study of Child Health. medRxiv. 2021. https://doi.org/10.1101/2021.08.10.21261846.

  13. Holt-Lunstad J, Smith TB, Baker M, Harris T, Stephenson D. Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect Psychol Sci. 2015;10:227–37.

    Article  Google Scholar 

  14. Cacioppo JT, Cacioppo S, Capitanio JP, Cole SW. The neuroendocrinology of social isolation. Annu Rev Psychol. 2015;66:733–67.

    Article  Google Scholar 

  15. Elovainio M, Hakulinen C, Pulkki-Raback L, Virtanen M, Josefsson K, Jokela M, et al. Contribution of risk factors to excess mortality in isolated and lonely individuals: an analysis of data from the UK Biobank cohort study. Lancet Public Health. 2017;2:e260–6.

    Article  Google Scholar 

  16. Bzdok D, Dunbar RIM. The Neurobiology of Social Distance. Trends Cogn Sci. 2020;24:717–33.

  17. Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: consequences of acute versus chronic social isolation. Cell. 2021;184:1500–16.

    Article  CAS  Google Scholar 

  18. Orben A, Tomova L, Blakemore S-J. The effects of social deprivation on adolescent development and mental health. Lancet Child Adolesc Health. 2020;4:634–40.

    Article  CAS  Google Scholar 

  19. Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother. 2018;105:1205–22.

    Article  CAS  Google Scholar 

  20. Twenge JM, Joiner TEUS. Census Bureau-assessed prevalence of anxiety and depressive symptoms in 2019 and during the 2020 COVID-19 pandemic. Depress Anxiety. 2020;37:954–6.

    Article  CAS  Google Scholar 

  21. Freud A, Burlingham D. Infants without families, reports of the Hampstead nurseries 1939–1945. New York: International Universities Press; 1944.

  22. Harlow HF, Harlow M. Social deprivation in monkeys. Sci Am. 1962;207:136–46.

    Article  CAS  Google Scholar 

  23. Harlow HF, Dodsworth RO, Harlow MK. Total social isolation in monkeys. Proc Natl Acad Sci USA. 1965;54:90–7.

    Article  CAS  Google Scholar 

  24. Sanchez MM, Hearn EF, Do D, Rilling JK, Herndon JG. Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys. Brain Res. 1998;812:38–49.

    Article  CAS  Google Scholar 

  25. Eluvathingal TJ, Chugani HT, Behen ME, Juhasz C, Muzik O, Maqbool M, et al. Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatrics. 2006;117:2093–100.

    Article  Google Scholar 

  26. Mehta MA, Golembo NI, Nosarti C, Colvert E, Mota A, Williams SC, et al. Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian Adoptees study pilot. J Child Psychol Psychiatry. 2009;50:943–51.

    Article  Google Scholar 

  27. Tottenham N, Hare TA, Quinn BT, McCarry TW, Nurse M, Gilhooly T, et al. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev Sci. 2010;13:46–61.

    Article  Google Scholar 

  28. Yamamuro K, Yoshino H, Ogawa Y, Makinodan M, Toritsuka M, Yamashita M, et al. Social isolation during the critical period reduces synaptic and intrinsic excitability of a subtype of pyramidal cell in mouse prefrontal cortex. Cereb Cortex. 2018;28:998–1010.

    Article  Google Scholar 

  29. Okamura K, Yoshino H, Ogawa Y, Yamamuro K, Kimoto S, Yamaguchi Y, et al. Juvenile social isolation immediately affects the synaptic activity and firing property of fast-spiking parvalbumin-expressing interneuron subtype in mouse medial prefrontal cortex. Cereb Cortex. 2022;bhac294.

  30. Miyazaki T, Takase K, Nakajima W, Tada H, Ohya D, Sano A, et al. Disrupted cortical function underlies behavior dysfunction due to social isolation. J Clin Invest. 2012;122:2690–701.

    Article  CAS  Google Scholar 

  31. Whitaker LR, Degoulet M, Morikawa H. Social deprivation enhances VTA synaptic plasticity and drug-induced contextual learning. Neuron. 2013;77:335–45.

    Article  CAS  Google Scholar 

  32. Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science. 2012;337:1357–60.

    Article  CAS  Google Scholar 

  33. Wallace DL, Han MH, Graham DL, Green TA, Vialou V, Iniguez SD, et al. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci. 2009;12:200–9.

    Article  CAS  Google Scholar 

  34. Zelikowsky M, Hui M, Karigo T, Choe A, Yang B, Blanco MR, et al. The Neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress. Cell. 2018;173:1265–79 e1219.

    Article  CAS  Google Scholar 

  35. Yamamuro K, Bicks LK, Leventhal MB, Kato D, Im S, Flanigan ME, et al. A prefrontal-paraventricular thalamus circuit requires juvenile social experience to regulate adult sociability in mice. Nat Neurosci. 2020;23:1240–52.

    Article  Google Scholar 

  36. Park G, Ryu C, Kim S, Jeong SJ, Koo JW, Lee YS, et al. Social isolation impairs the prefrontal-nucleus accumbens circuit subserving social recognition in mice. Cell Rep. 2021;35:109104.

    Article  CAS  Google Scholar 

  37. Gray PH. Theory and evidence of imprinting in human infants. J Psychol. 1958;46:155–66.

    Article  Google Scholar 

  38. Spitz RA. The smiling response: a contribution to the ontogenesis of social relations. Genet Psychol Monogr. 1946;34:57–125.

    Google Scholar 

  39. Scott JP. Critical periods in behavioral development. Science. 1962;138:949–58.

    Article  CAS  Google Scholar 

  40. Scott JP. The process of primary socialization in canine and human infants. Monogr Soc Res Child Dev. 1963;28:1–47.

    Article  CAS  Google Scholar 

  41. Bock J, Rether K, Groger N, Xie L, Braun K. Perinatal programming of emotional brain circuits: an integrative view from systems to molecules. Front Neurosci. 2014;8:11.

    Article  Google Scholar 

  42. Sonuga-Barke EJS, Kennedy M, Kumsta R, Knights N, Golm D, Rutter M, et al. Child-to-adult neurodevelopmental and mental health trajectories after early life deprivation: the young adult follow-up of the longitudinal English and Romanian Adoptees study. Lancet. 2017;389:1539–48.

    Article  Google Scholar 

  43. Kennedy M, Kreppner J, Knights N, Kumsta R, Maughan B, Golm D, et al. Early severe institutional deprivation is associated with a persistent variant of adult attention-deficit/hyperactivity disorder: clinical presentation, developmental continuities and life circumstances in the English and Romanian Adoptees study. J Child Psychol Psychiatry. 2016;57:1113–25.

    Article  Google Scholar 

  44. Zeanah CH, Egger HL, Smyke AT, Nelson CA, Fox NA, Marshall PJ, et al. Institutional rearing and psychiatric disorders in Romanian preschool children. Am J Psychiatry. 2009;166:777–85.

    Article  Google Scholar 

  45. Rutter M. Developmental catch-up, and deficit, following adoption after severe global early privation. English and Romanian Adoptees (ERA) Study Team. J Child Psychol Psychiatry. 1998;39:465–76.

    Article  CAS  Google Scholar 

  46. Rutter M, Colvert E, Kreppner J, Beckett C, Castle J, Groothues C, et al. Early adolescent outcomes for institutionally-deprived and non-deprived adoptees. I: disinhibited attachment. J Child Psychol Psychiatry. 2007;48:17–30.

    Article  Google Scholar 

  47. Abuga JA, Kariuki SM, Kinyanjui SM, Boele Van Hensbroek M, Newton CRJC. Premature mortality in children aged 6–9 years with neurological impairments in rural Kenya: a cohort study. Lancet Glob Health. 2019;7:e1728–35.

    Article  Google Scholar 

  48. Trube-Becker E. The death of children following negligence: social aspects. Forensic Sci. 1977;9:111–5.

    Article  CAS  Google Scholar 

  49. Doretto V, Scivoletto S. Effects of early neglect experience on recognition and processing of facial expressions: a systematic review. Brain Sci. 2018;8:10.

  50. Davies C, Hendry A, Gibson SP, Gliga T, McGillion M, Gonzalez-Gomez N. Early childhood education and care (ECEC) during COVID-19 boosts growth in language and executive function. Infant Child Dev. 2021;30:e2241.

  51. Duguay G, Garon-Bissonnette J, Lemieux R, Dubois-Comtois K, Mayrand K, Berthelot N. Socioemotional development in infants of pregnant women during the COVID-19 pandemic: the role of prenatal and postnatal maternal distress. Child Adolesc Psychiatry Ment Health. 2022;16:28.

    Article  Google Scholar 

  52. Loades ME, Chatburn E, Higson-Sweeney N, Reynolds S, Shafran R, Brigden A, et al. Rapid systematic review: the impact of social isolation and loneliness on the mental health of children and adolescents in the context of COVID-19. J Am Acad Child Adolesc Psychiatry. 2020;59:1218–39.e1213.

    Article  Google Scholar 

  53. Xie X, Xue Q, Zhou Y, Zhu K, Liu Q, Zhang J, et al. Mental health status among children in home confinement during the coronavirus disease 2019 outbreak in Hubei Province, China. JAMA Pediatr. 2020;174:898–900.

    Article  Google Scholar 

  54. Zhang L, Zhang D, Fang J, Wan Y, Tao F, Sun Y. Assessment of mental health of Chinese primary school students before and after school closing and opening during the COVID-19 Pandemic. JAMA Netw Open. 2020;3:e2021482.

    Article  Google Scholar 

  55. Abdalla SM, Ettman CK, Cohen GH, Galea S. Mental health consequences of COVID-19: a nationally representative cross-sectional study of pandemic-related stressors and anxiety disorders in the USA. BMJ Open. 2021;11:e044125.

    Article  Google Scholar 

  56. Galea S, Merchant RM, Lurie N. The mental health consequences of COVID-19 and physical distancing: the need for prevention and early intervention. JAMA Intern Med. 2020;180:817–8.

    Article  CAS  Google Scholar 

  57. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020;395:912–20.

    Article  CAS  Google Scholar 

  58. Arrigo BA, Bullock JL. The psychological effects of solitary confinement on prisoners in supermax units: reviewing what we know and recommending what should change. Int J Offender Ther Comp Criminol. 2008;52:622–40.

    Article  Google Scholar 

  59. Zhai Y, Yi H, Shen W, Xiao Y, Fan H, He F, et al. Association of empty nest with depressive symptom in a Chinese elderly population: a cross-sectional study. J Affect Disord. 2015;187:218–23.

    Article  Google Scholar 

  60. Chen P, Hong W. Neural Circuit Mechanisms of Social Behavior. Neuron. 2018;98:16–30.

    Article  CAS  Google Scholar 

  61. VanTieghem M, Korom M, Flannery J, Choy T, Caldera C, Humphreys KL, et al. Longitudinal changes in amygdala, hippocampus and cortisol development following early caregiving adversity. Dev Cogn Neurosci. 2021;48:100916.

    Article  CAS  Google Scholar 

  62. Mackes NK, Golm D, Sarkar S, Kumsta R, Rutter M, Fairchild G, et al. Early childhood deprivation is associated with alterations in adult brain structure despite subsequent environmental enrichment. Proc Natl Acad Sci USA. 2020;117:641–9.

    Article  CAS  Google Scholar 

  63. Hodel AS, Hunt RH, Cowell RA, Van Den Heuvel SE, Gunnar MR, Thomas KM. Duration of early adversity and structural brain development in post-institutionalized adolescents. Neuroimage. 2015;105:112–9.

    Article  Google Scholar 

  64. Sheridan MA, Fox NA, Zeanah CH, McLaughlin KA, Nelson CA 3rd. Variation in neural development as a result of exposure to institutionalization early in childhood. Proc Natl Acad Sci USA. 2012;109:12927–32.

    Article  CAS  Google Scholar 

  65. McLaughlin KA, Fox NA, Zeanah CH, Sheridan MA, Marshall P, Nelson CA. Delayed maturation in brain electrical activity partially explains the association between early environmental deprivation and symptoms of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2010;68:329–36.

    Article  Google Scholar 

  66. Puetz VB, Parker D, Kohn N, Dahmen B, Verma R, Konrad K. Altered brain network integrity after childhood maltreatment: a structural connectomic DTI-study. Hum Brain Mapp. 2017;38:855–68.

    Article  CAS  Google Scholar 

  67. Govindan RM, Behen ME, Helder E, Makki MI, Chugani HT. Altered water diffusivity in cortical association tracts in children with early deprivation identified with Tract-Based Spatial Statistics (TBSS). Cereb Cortex. 2010;20:561–9.

    Article  Google Scholar 

  68. Bick J, Zhu T, Stamoulis C, Fox NA, Zeanah C, Nelson CA. Effect of early institutionalization and foster care on long-term white matter development: a randomized clinical trial. JAMA Pediatr. 2015;169:211–9.

    Article  Google Scholar 

  69. Behen ME, Muzik O, Saporta AS, Wilson BJ, Pai D, Hua J, et al. Abnormal fronto-striatal connectivity in children with histories of early deprivation: a diffusion tensor imaging study. Brain Imaging Behav. 2009;3:292–7.

    Article  Google Scholar 

  70. Gee DG, Humphreys KL, Flannery J, Goff B, Telzer EH, Shapiro M, et al. A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. J Neurosci. 2013;33:4584–93.

    Article  CAS  Google Scholar 

  71. Monk CS. The development of emotion-related neural circuitry in health and psychopathology. Dev Psychopathol. 2008;20:1231–50.

    Article  Google Scholar 

  72. Hariri AR, Mattay VS, Tessitore A, Fera F, Weinberger DR. Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry. 2003;53:494–501.

    Article  Google Scholar 

  73. Gee DG, Gabard-Durnam LJ, Flannery J, Goff B, Humphreys KL, Telzer EH, et al. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci. 2013;110:15638–43.

    Article  CAS  Google Scholar 

  74. Tottenham N, Hare TA, Millner A, Gilhooly T, Zevin JD, Casey BJ. Elevated amygdala response to faces following early deprivation. Dev Sci. 2011;14:190–204.

    Article  CAS  Google Scholar 

  75. Silvers JA, Lumian DS, Gabard-Durnam L, Gee DG, Goff B, Fareri DS, et al. Previous institutionalization is followed by broader amygdala-hippocampal-PFC network connectivity during aversive learning in human development. J Neurosci. 2016;36:6420–30.

    Article  CAS  Google Scholar 

  76. Fareri DS, Gabard-Durnam L, Goff B, Flannery J, Gee DG, Lumian DS, et al. Altered ventral striatal-medial prefrontal cortex resting-state connectivity mediates adolescent social problems after early institutional care. Dev Psychopathol. 2017;29:1865–76.

    Article  Google Scholar 

  77. Tomova L, Wang KL, Thompson T, Matthews GA, Takahashi A, Tye KM, et al. Acute social isolation evokes midbrain craving responses similar to hunger. Nat Neurosci. 2020;23:1597–605.

    Article  CAS  Google Scholar 

  78. Li W, Wang Z, Syed S, Lyu C, Lincoln S, O’Neil J, et al. Chronic social isolation signals starvation and reduces sleep in Drosophila. Nature. 2021;597:239–44.

    Article  CAS  Google Scholar 

  79. Salomon T, Cohen A, Barazany D, Ben-Zvi G, Botvinik-Nezer R, Gera R, et al. Brain volumetric changes in the general population following the COVID-19 outbreak and lockdown. Neuroimage. 2021;239:118311.

    Article  CAS  Google Scholar 

  80. Feng X, Wang L, Yang S, Qin D, Wang J, Li C, et al. Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proc Natl Acad Sci USA. 2011;108:14312–7.

    Article  CAS  Google Scholar 

  81. Wang J, Feng X, Wu J, Xie S, Li L, Xu L, et al. Alterations of gray matter volume and white matter integrity in maternal deprivation monkeys. Neuroscience. 2018;384:14–20.

    Article  CAS  Google Scholar 

  82. Conti G, Hansman C, Heckman JJ, Novak MF, Ruggiero A, Suomi SJ. Primate evidence on the late health effects of early-life adversity. Proc Natl Acad Sci USA. 2012;109:8866–71.

    Article  CAS  Google Scholar 

  83. Li X, Xu F, Xie L, Ji Y, Cheng K, Zhou Q, et al. Depression-like behavioral phenotypes by social and social plus visual isolation in the adult female Macaca fascicularis. PLoS One. 2013;8:e73293.

    Article  CAS  Google Scholar 

  84. Lavenda-Grosberg D, Lalzar M, Leser N, Yaseen A, Malik A, Maroun M, et al. Acute social isolation and regrouping cause short- and long-term molecular changes in the rat medial amygdala. Mol Psychiatry. 2022;27:886–95.

    Article  CAS  Google Scholar 

  85. Fabricius K, Helboe L, Steiniger-Brach B, Fink-Jensen A, Pakkenberg B. Stereological brain volume changes in post-weaned socially isolated rats. Brain Res. 2010;1345:233–9.

    Article  CAS  Google Scholar 

  86. Cuesta S, Funes A, Pacchioni AM. Social isolation in male rats during adolescence inhibits the Wnt/beta-Catenin pathway in the prefrontal cortex and enhances anxiety and cocaine-induced plasticity in adulthood. Neurosci Bull. 2020;36:611–24.

    Article  CAS  Google Scholar 

  87. Day-Wilson KM, Jones DN, Southam E, Cilia J, Totterdell S. Medial prefrontal cortex volume loss in rats with isolation rearing-induced deficits in prepulse inhibition of acoustic startle. Neuroscience. 2006;141:1113–21.

    Article  CAS  Google Scholar 

  88. Liu C, Li Y, Edwards TJ, Kurniawan ND, Richards LJ, Jiang T. Altered structural connectome in adolescent socially isolated mice. Neuroimage. 2016;139:259–70.

    Article  Google Scholar 

  89. Musardo S, Contestabile A, Knoop M, Baud O, Bellone C. Oxytocin neurons mediate the effect of social isolation via the VTA circuits. Elife. 2022;11:e73421.

    Article  CAS  Google Scholar 

  90. Wang ZJ, Shwani T, Liu J, Zhong P, Yang F, Schatz K, et al. Molecular and cellular mechanisms for differential effects of chronic social isolation stress in males and females. Mol Psychiatry. 2022;27:3056–68.

    Article  CAS  Google Scholar 

  91. Solie C, Girard B, Righetti B, Tapparel M, Bellone C. VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error. Nat Neurosci. 2022;25:86–97.

    Article  CAS  Google Scholar 

  92. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.

    Article  CAS  Google Scholar 

  93. Dong X, Li S, Kirouac GJ. Collateralization of projections from the paraventricular nucleus of the thalamus to the nucleus accumbens, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain Struct Funct. 2017;222:3927–43.

    Article  Google Scholar 

  94. Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, et al. Gating of social reward by oxytocin in the ventral tegmental area. Science. 2017;357:1406–11.

    Article  CAS  Google Scholar 

  95. Zimmer MR, Fonseca AHO, Iyilikci O, Pra RD, Dietrich MO. Functional ontogeny of hypothalamic Agrp neurons in neonatal mouse behaviors. Cell. 2019;178:44–59 e47.

    Article  CAS  Google Scholar 

  96. Yamamuro K, Yoshino H, Ogawa Y, Okamura K, Nishihata Y, Makinodan M, et al. Juvenile social isolation enhances the activity of inhibitory neuronal circuits in the medial prefrontal cortex. Front Cell Neurosci. 2020;14:105.

    Article  CAS  Google Scholar 

  97. Bicks LK, Yamamuro K, Flanigan ME, Kim JM, Kato D, Lucas EK, et al. Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior. Nat Commun. 2020;11:1003.

    Article  CAS  Google Scholar 

  98. Tada H, Miyazaki T, Takemoto K, Takase K, Jitsuki S, Nakajima W, et al. Neonatal isolation augments social dominance by altering actin dynamics in the medial prefrontal cortex. Proc Natl Acad Sci USA. 2016;113:E7097–105.

    Article  CAS  Google Scholar 

  99. Stranahan AM, Khalil D, Gould E. Social isolation delays the positive effects of running on adult neurogenesis. Nat Neurosci. 2006;9:526–33.

    Article  CAS  Google Scholar 

  100. Ohta KI, Suzuki S, Warita K, Kaji T, Kusaka T, Miki T. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. J Neurochem. 2017;141:179–94.

    Article  CAS  Google Scholar 

  101. Zhang J, Liu D, Fu P, Liu ZQ, Lai C, Yang CQ, et al. Social isolation reinforces aging-related behavioral inflexibility by promoting neuronal necroptosis in basolateral amygdala. Mol Psychiatry. 2022;1–14.

  102. Preece MA, Dalley JW, Theobald DEH, Robbins TW, Reynolds GP. Region specific changes in forebrain 5-hydroxytryptamine1A and 5-hydroxytryptamine2A receptors in isolation-reared rats: an in vitro autoradiography study. Neuroscience. 2004;123:725–32.

    Article  CAS  Google Scholar 

  103. Bean G, Lee T. Social isolation and cohabitation with haloperidol-treated partners: effect on density of striatal dopamine D2 receptors in the developing rat brain. Psychiatry Res. 1991;36:307–17.

    Article  CAS  Google Scholar 

  104. Bianchi M, Fone KF, Azmi N, Heidbreder CA, Hagan JJ, Marsden CA. Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. Eur J Neurosci. 2006;24:2894–902.

    Article  CAS  Google Scholar 

  105. Silva-Gómez AB, Rojas DX, Juárez I, Flores G. Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res. 2003;983:128–36.

    Article  Google Scholar 

  106. Keesom SM, Morningstar MD, Sandlain R, Wise BM, Hurley LM. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice. Brain Res. 2018;1694:94–103.

    Article  CAS  Google Scholar 

  107. Adzic M, Djordjevic A, Demonacos C, Krstic-Demonacos M, Radojcic MB. The role of phosphorylated glucocorticoid receptor in mitochondrial functions and apoptotic signalling in brain tissue of stressed Wistar rats. Int J Biochem Cell Biol. 2009;41:2181–8.

    Article  CAS  Google Scholar 

  108. Chatterjee D, Chatterjee-Chakraborty M, Rees S, Cauchi J, de Medeiros CB, Fleming AS. Maternal isolation alters the expression of neural proteins during development: ‘Stroking’ stimulation reverses these effects. Brain Res. 2007;1158:11–27.

    Article  CAS  Google Scholar 

  109. Sabatini MJ, Ebert P, Lewis DA, Levitt P, Cameron JL, Mirnics K. Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. J Neurosci. 2007;27:3295–304.

    Article  CAS  Google Scholar 

  110. Levine JB, Youngs RM, MacDonald ML, Chu M, Leeder AD, Berthiaume F, et al. Isolation rearing and hyperlocomotion are associated with reduced immediate early gene expression levels in the medial prefrontal cortex. Neuroscience. 2007;145:42–55.

    Article  CAS  Google Scholar 

  111. Andero R, Daniel S, Guo JD, Bruner RC, Seth S, Marvar PJ, et al. Amygdala-dependent molecular mechanisms of the Tac2 pathway in fear learning. Neuropsychopharmacology. 2016;41:2714–22.

    Article  CAS  Google Scholar 

  112. Teissier A, Le Magueresse C, Olusakin J, Andrade da Costa BLS, De Stasi AM, Bacci A, et al. Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Mol Psychiatry. 2020;25:1159–74.

    Article  CAS  Google Scholar 

  113. Nakamoto K, Aizawa F, Kinoshita M, Koyama Y, Tokuyama S. Astrocyte activation in locus coeruleus is involved in neuropathic pain exacerbation mediated by maternal separation and social isolation stress. Front Pharm. 2017;8:401.

    Article  Google Scholar 

  114. Gong Y, Tong L, Yang R, Hu W, Xu X, Wang W, et al. Dynamic changes in hippocampal microglia contribute to depressive-like behavior induced by early social isolation. Neuropharmacology. 2018;135:223–33.

    Article  CAS  Google Scholar 

  115. Omran AJ, Shao AS, Watanabe S, Zhang Z, Zhang J, Xue C, et al. Social isolation induces neuroinflammation and microglia overactivation, while dihydromyricetin prevents and improves them. J Neuroinflammation. 2022;19:2.

    Article  Google Scholar 

  116. Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci. 2012;15:1621–3.

    Article  CAS  Google Scholar 

  117. Bath KG, Manzano-Nieves G, Goodwill H. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Horm Behav. 2016;82:64–71.

    Article  CAS  Google Scholar 

  118. Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci. 2014;17:1518–27.

    Article  CAS  Google Scholar 

  119. Yeung MS, Zdunek S, Bergmann O, Bernard S, Salehpour M, Alkass K, et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell. 2014;159:766–74.

    Article  CAS  Google Scholar 

  120. Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci USA. 2012;109:16480–5.

    Article  CAS  Google Scholar 

  121. Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010;119:37–53.

    Article  Google Scholar 

  122. Nave KA, Werner HB. Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol. 2014;30:503–33.

    Article  CAS  Google Scholar 

  123. Nave KA. Myelination and support of axonal integrity by glia. Nature. 2010;468:244–52.

    Article  CAS  Google Scholar 

  124. Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485:517–21.

    Article  Google Scholar 

  125. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487:443–8.

    Article  CAS  Google Scholar 

  126. Noori R, Park D, Griffiths JD, Bells S, Frankland PW, Mabbott D, et al. Activity-dependent myelination: a glial mechanism of oscillatory self-organization in large-scale brain networks. Proc Natl Acad Sci USA. 2020;117:13227–37.

    Article  CAS  Google Scholar 

  127. Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, et al. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron. 2020;105:150–64.e156.

    Article  CAS  Google Scholar 

  128. Chen X, Wang F, Gan J, Zhang Z, Liang X, Li T, et al. Myelin deficits caused by Olig2 deficiency lead to cognitive dysfunction and increase vulnerability to social withdrawal in adult mice. Neurosci Bull. 2020;36:419–26.

    Article  CAS  Google Scholar 

  129. Cascio CJ, Moore D, McGlone F. Social touch and human development. Dev Cogn Neurosci. 2019;35:5–11.

    Article  Google Scholar 

  130. Yu H, Miao W, Ji E, Huang S, Jin S, Zhu X, et al. Social touch-like tactile stimulation activates a tachykinin 1-oxytocin pathway to promote social interactions. Neuron. 2022;110:1051–67.

    Article  CAS  Google Scholar 

  131. Alkire D, Levitas D, Warnell KR, Redcay E. Social interaction recruits mentalizing and reward systems in middle childhood. Hum Brain Mapp. 2018;39:3928–42.

    Article  Google Scholar 

  132. Van Essen DC, Donahue CJ, Coalson TS, Kennedy H, Hayashi T, Glasser MF. Cerebral cortical folding, parcellation, and connectivity in humans, nonhuman primates, and mice. Proc Natl Acad Sci. 2019;116:26173–80.

    Article  Google Scholar 

  133. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13:1161–9.

    Article  CAS  Google Scholar 

  134. Defelipe J, Fields RD, Hof PR, Hoistad M, Kostovic I, Meyer G, et al. Cortical white matter: beyond the pale remarks, main conclusions and discussion. Front Neuroanat. 2010;4:4.

    Google Scholar 

  135. Bakken TE, Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, et al. A comprehensive transcriptional map of primate brain development. Nature. 2016;535:367–75.

    Article  CAS  Google Scholar 

  136. Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature. 2016;530:98–102.

    Article  CAS  Google Scholar 

  137. Okano H. Current status of and perspectives on the application of marmosets in neurobiology. Annu Rev Neurosci. 2021;44:27–48.

    Article  CAS  Google Scholar 

  138. Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X. Marmosets: a neuroscientific model of human social behavior. Neuron. 2016;90:219–33.

    Article  CAS  Google Scholar 

  139. Rylands AB. Marmosets and Tamarins: Systematic, Behaviour, and Ecology, Oxford University Press, Oxford. 1993;177–99.

  140. Cinini SM, Barnabe GF, Galvao-Coelho N, de Medeiros MA, Perez-Mendes P, Sousa MB, et al. Social isolation disrupts hippocampusocampal neurogenesis in young non-human primates. Front Neurosci. 2014;8:45.

    Article  Google Scholar 

  141. Arabadzisz D, Diaz-Heijtz R, Knuesel I, Weber E, Pilloud S, Dettling AC, et al. Primate early life stress leads to long-term mild hippocampusocampal decreases in corticosteroid receptor expression. Biol Psychiatry. 2010;67:1106–9.

    Article  CAS  Google Scholar 

  142. Tardif SD, Smucny DA, Abbott DH, Mansfield K, Schultz-Darken N, Yamamoto ME. Reproduction in captive common marmosets (Callithrix jacchus). Comp Med. 2003;53:364–8.

    CAS  Google Scholar 

  143. Hare B, Brown M, Williamson C, Tomasello M. The domestication of social cognition in dogs. Science. 2002;298:1634–6.

    Article  CAS  Google Scholar 

  144. MacLean EL, Herrmann E, Suchindran S, Hare B. Individual differences in cooperative communicative skills are more similar between dogs and humans than chimpanzees. Anim Behav. 2017;126:41–51.

    Article  Google Scholar 

  145. Handelman, B. Canine Behavior: A Photo Illustrated Handbook; Dogwise Publishing: Wenatchee, 2012.

  146. Ren W, Wei P, Yu S, Zhang YQ. Left-right asymmetry and attractor-like dynamics of dog’s tail wagging during dog-human interactions. iScience. 2022;25:104747.

  147. Freedman DG, King JA, Elliot O. Critical period in the social development of dogs. Science. 1961;133:1016–7.

    Article  CAS  Google Scholar 

  148. Hong H, Zhao Z, Huang X, Guo C, Zhao H, Wang GD, et al. Comparative proteome and cis-regulatory element analysis reveals specific molecular pathways conserved in dog and human brains. Mol Cell Proteom. 2022;21:100261.

    Article  CAS  Google Scholar 

  149. Andics A, Gabor A, Gacsi M, Farago T, Szabo D, Miklosi A. Neural mechanisms for lexical processing in dogs. Science. 2016;353:1030–2.

    Article  CAS  Google Scholar 

  150. Liu X, Tian R, Zuo Z, Zhao H, Wu L, Zhuo Y, et al. A high-resolution MRI brain template for adult Beagle. Magn Reson Imaging. 2020;68:148–57.

    Article  Google Scholar 

  151. Zhao H, Zhao J, Wu D, Sun Z, Hua Y, Zheng M, et al. Dogs lacking Apolipoprotein E show advanced atherosclerosis leading to apparent clinical complications. Sci China Life Sci. 2022;65:1342–56.

  152. Liu C, Yen CC, Szczupak D, Ye FQ, Leopold DA, Silva AC. Anatomical and functional investigation of the marmoset default mode network. Nat Commun. 2019;10:1975.

    Article  Google Scholar 

  153. Liu C, Ye FQ, Newman JD, Szczupak D, Tian X, Yen CC, et al. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat Neurosci. 2020;23:271–80.

    Article  CAS  Google Scholar 

  154. Fogel AL, Kvedar JC. Artificial intelligence powers digital medicine. NPJ Digit Med. 2018;1:5.

    Article  Google Scholar 

  155. Mac Aonghusa P, Michie S. Artificial intelligence and behavioral science through the looking glass: challenges for real-world application. Ann Behav Med. 2020;54:942–7.

    Article  Google Scholar 

  156. Adikari A, Nawaratne R, De Silva D, Ranasinghe S, Alahakoon O, Alahakoon D. Emotions of COVID-19: content analysis of self-reported information using artificial intelligence. J Med Internet Res. 2021;23:e27341.

    Article  Google Scholar 

  157. Kishi N, Sato K, Sasaki E, Okano H. Common marmoset as a new model animal for neuroscience research and genome editing technology. Dev Growth Differ. 2014;56:53–62.

    Article  CAS  Google Scholar 

  158. Park JE, Zhang XF, Choi SH, Okahara J, Sasaki E, Silva AC. Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci Rep. 2016;6:34931.

    Article  CAS  Google Scholar 

  159. Marinelli C, Bertalot T, Zusso M, Skaper SD, Giusti P. Systematic review of pharmacological properties of the oligodendrocyte lineage. Front Cell Neurosci. 2016;10:27.

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Zhu, M. Ho and W. Li for comments on the manuscript. We apologize for not citing all relevant references due to space limitations. We thank the two anonymous reviewers for comments and suggestions on the manuscript.

Funding

This work was supported by grants from The National Key Research and Development Program (2019YFA0707100 to YQZ and 2021ZD0203901 to YQZ and CL), the Strategic Priority Research Program B of the Chinese Academy of Sciences (XDBS1020100 to YQZ), and the National Science Foundation of China (31830036 and 31921002 to YQZ and 32171088 to CL).

Author information

Authors and Affiliations

Authors

Contributions

YX: conceptualization, visualization, writing—original draft, writing—review and editing; HH: visualization, writing—original draft; CL: writing—review and editing; YQZ: conceptualization, writing—review and editing, supervision.

Corresponding author

Correspondence to Yong Q. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Hong, H., Liu, C. et al. Social isolation and the brain: effects and mechanisms. Mol Psychiatry 28, 191–201 (2023). https://doi.org/10.1038/s41380-022-01835-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-022-01835-w

This article is cited by

Search

Quick links