Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Of mice, molecules and mental health: establishment of the consortium for preclinical psychiatric research to find solutions to the translational gap

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Nani JV, Muotri AR, Hayashi MAF. Peering into the mind: unraveling schizophrenia’s secrets using models. Molecular psychiatry. 2025;30:659–78.

    Article  PubMed  Google Scholar 

  2. Hill RA, Sundram S. Consortium for Preclinical Psychiatric Research - Knowledge databank. vol. Online resource: figshare, 2024, pp https://figshare.com/articles/online_resource/Australian_Consortium_for_Preclinical_Psychiatric_Research_-_Knowledge_databank/25114685?file=49200790.

  3. Collaborators GBDMD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9:137–50.

    Article  Google Scholar 

  4. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kaul I, Sawchak S, Correll CU, Kakar R, Breier A, Zhu H, et al. Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline-trospium) in schizophrenia (EMERGENT-2) in the USA: results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial. Lancet. 2024;403:160–70.

    Article  PubMed  CAS  Google Scholar 

  6. Balan I, Patterson R, Boero G, Krohn H, O’Buckley TK, Meltzer-Brody S, et al. Brexanolone therapeutics in post-partum depression involves inhibition of systemic inflammatory pathways. EBioMedicine. 2023;89:104473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Trubetskoy V, Pardinas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Electronic address ameau, Major Depressive Disorder Working Group of the Psychiatric Genomics C. Trans-ancestry genome-wide study of depression identifies 697 associations implicating cell types and pharmacotherapies. Cell. 2025;188:640–652.e9.

    Article  PubMed Central  Google Scholar 

  9. Davies C, Segre G, Estrade A, Radua J, De Micheli A, Provenzani U, et al. Prenatal and perinatal risk and protective factors for psychosis: a systematic review and meta-analysis. Lancet Psychiatry. 2020;7:399–410.

    Article  PubMed  Google Scholar 

  10. Gu X, Moran R, Srivastava D, Walton M Harnessing the potential of cellular, animal and computational neuroscience models for mental health. Wellcome Trust. Online resource https://doi.org/10.6084/m9.figshare.24321751.v12023.

  11. Spierling SR, Zorrilla EP. Don’t stress about CRF: assessing the translational failures of CRF(1)antagonists. Psychopharmacology. 2017;234:1467–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Purdy RH, Morrow AL, Moore PH Jr., Paul SM. Stress-induced elevations of gamma-aminobutyric acid type a receptor-active steroids in the rat brain. Proceedings of the National Academy of Sciences of the United States of America. 1991;88:4553–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232:1004–7.

    Article  PubMed  CAS  Google Scholar 

  14. Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, et al. Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:13284–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Luisi S, Petraglia F, Benedetto C, Nappi RE, Bernardi F, Fadalti M, et al. Serum allopregnanolone levels in pregnant women: changes during pregnancy, at delivery, and in hypertensive patients. The Journal of clinical endocrinology and metabolism. 2000;85:2429–33.

    Article  PubMed  CAS  Google Scholar 

  16. Dalmau J, Armangue T, Planaguma J, Radosevic M, Mannara F, Leypoldt F, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 2019;18:1045–57.

    Article  PubMed  CAS  Google Scholar 

  17. Vitaliani R, Mason W, Ances B, Zwerdling T, Jiang Z, Dalmau J. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol. 2005;58:594–604.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RAH is supported by an Alan and Kate Gibson Foundation Fellowship. MB is supported by a National Health and Medical Research Council (NHMRC) Leadership 3 Investigator grant (GNT2017131). EH-Y is supported by Axial Therapeutics, Boston, MA, USA.; NHMRC Ideas grant APP2003848. EM is supported by an Australian Research Council (ARC) Discover projects DP230102566 and DP220102567 and NHMRC Ideas grants APP2020762 and APP2020768. JN is supported by One in Five McIver Research Fellowship. CPa was supported by a NHMRC L3 Investigator Grant (1196508). JHK is supported by the Australian Research Council Future Fellowship (FT220100351). TR is supported by a Ronald Philip Griffiths Fellowship from the University of Melbourne. TP-T is supported by a NSW Health Schizophrenia Research Grant.

Author information

Authors and Affiliations

Consortia

Contributions

RAH conceptualised and wrote the manuscript, MB, RMB, THB, XC, ALD, DE, CJF, ELHY, MJYK, TK, JPK, JHK, HC, TDPT, SJT, KW, KWG, SS contributed to the concept and edited the manuscript. EMB, RC, SC, KJC, JMG, CG, CG, AJH, LH, EJ, MCJ, NCJ, AJL, EEM, NM, AM, JN, CP, CJP, AEP, TR, ZS, AS, DLS, CT, and JT edited the manuscript.

Corresponding authors

Correspondence to Rachel A. Hill or Suresh Sundram.

Ethics declarations

Competing interests

EH-Y is a scientific advisor for Adepa; JN is a co-founder of Phrenix Therapeutics Pty Ltd. No other authors declared a competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consortium for Preclinical Psychiatric Research. Of mice, molecules and mental health: establishment of the consortium for preclinical psychiatric research to find solutions to the translational gap. Mol Psychiatry 31, 1167–1170 (2026). https://doi.org/10.1038/s41380-025-03361-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03361-x

Search

Quick links