Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prefrontal parvalbumin neurons as a target for enhancing cognition in non-pathological and 22q11.2 microdeletion syndrome mice

Abstract

To achieve goals in a dynamic environment, the prefrontal cortex (PFC) facilitates various cognitive functions that allow an organism to detect and discriminate information, identify changes in context, and apply this information to representations of known rules and internal states. A failure of organized communication in the PFC is thought to contribute to the emergence of cognitive impairments in psychiatric diseases, with attentional deficits occurring as a fundamental symptom across various conditions. The 22q11.2 microdeletion syndrome is a rare genetic condition that confers a high risk for developing psychiatric and neurodevelopmental disorders, and mouse models have been shown to display attention impairments and PFC pathology that are relevant to clinical populations. Abnormalities in prefrontal parvalbumin-expressing neurons (PVNs) are part of the observed pathophysiology, and studies in rodents have shown that the direct manipulation of these cells can induce behavioral deficits that align with the cognitive symptoms seen in psychiatric diseases. PVNs are a subclass of GABAergic inhibitory cells that facilitate high frequency oscillations that are associated with information processing in the cortex. Because PVNs have such a pivotal role in organizing the input of information to the PFC, their dysfunction could contribute to the manifestation of a variety of cognitive and behavior impairments in disease states. In the present study, we expanded on the role of PVNs in supporting cognition by investigating their involvement in multiple components of attentional functions using a translationally relevant task of focused visual attention, in both non-pathological mice and a model of the 22q11.2 microdeletion syndrome. Using genetically-encoded calcium sensors, fiber photometry, and optogenetics, we describe a novel assessment of how PVN activity is modulated by learning and acute changes in task demands. Interestingly, we observed that task-evoked prefrontal PVN activity was reduced in mice that exhibited poorer attention and in 22q11.2 mutant mice. While PVN activity was shaped across learning in non-pathological mice, mutant mice exhibited a lack of signal dynamics that coincided with attentional deficits. Importantly, we observed that task performance in both poor performing wild-types and 22q11.2 mutants could be alleviated by high frequency (gamma band range) PVN stimulation. Thus, PVNs appear to be involved in the acquisition of task rules and execution of attention and continue to be a promising therapeutic target for cognitive dysfunction in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prefrontal PVN activity reliably tracks stimulus presentation and correct responses to non-target stimuli.
Fig. 2: Prefrontal PVN activity is altered by acute task demands and associated with task performance.
Fig. 3: Frequency-specific activation of prefrontal PVNs differentially modulates local oscillatory activity.
Fig. 4: Optogenetic disruption of prefrontal PVNs impairs target responding during the 1NT task.
Fig. 5: Gamma stimulation of prefrontal PVNs improves attention in low performing mice on the 4NT task.
Fig. 6: Learning amplifies PVN activity and is absent in a mouse model of the 22q11.2 microdeletion syndrome that displays attention deficits.
Fig. 7: Gamma stimulation of PVNs rescues deficits in discrimination sensitivity in a mouse model of 22q11.2 microdeletion syndrome.

Similar content being viewed by others

Data availability

Data is available upon request. Additionally, the datasets generated and analysed in this study will be freely accessible in the Mousebytes repository, https://mousebytes.ca/home.

References

  1. Chamberlin LA, Yang S-S, McEachern EP, Lucas JT, McLeod Ii OW, Rolland CA, et al. Pharmacogenetic activation of parvalbumin interneurons in the prefrontal cortex rescues cognitive deficits induced by adolescent MK801 administration. Neuropsychopharmacology. 2023;48:1267–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kamigaki T, Dan Y. Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior. Nat Neurosci. 2017;20:854–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Murray AJ, Woloszynowska-Fraser MU, Ansel-Bollepalli L, Cole KL, Foggetti A, Crouch B, et al. Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility. Sci Rep. 2015;5:16778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Nguyen R, Venkatesan S, Binko M, Bang JY, Cajanding JD, Briggs C, et al. Cholecystokinin-expressing interneurons of the medial prefrontal cortex mediate working memory retrieval. J Neurosci. 2020;40:2314–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Toader O, von Heimendahl M, Schuelert N, Nissen W, Rosenbrock H. Suppression of parvalbumin interneuron activity in the prefrontal cortex recapitulates features of impaired excitatory/inhibitory balance and sensory processing in schizophrenia. Schizophr Bull. 2020;46:981–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cho KK, Davidson TJ, Bouvier G, Marshall JD, Schnitzer MJ, Sohal VS. Cross-hemispheric gamma synchrony between prefrontal parvalbumin interneurons supports behavioral adaptation during rule shift learning. Nat Neurosci. 2020;23:892–902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cho KK, Hoch R, Lee AT, Patel T, Rubenstein JL, Sohal VS. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6+/− mice. Neuron. 2015;85:1332–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cho KK, Shi J, Phensy AJ, Turner ML, Sohal VS. Long-range inhibition synchronizes and updates prefrontal task activity. Nature. 2023;617:548–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Patrono E, Hrůzova K, Svoboda J, Stuchlík A. The role of optogenetic stimulations of parvalbumin-positive interneurons in the prefrontal cortex and the ventral hippocampus on an acute MK-801 model of schizophrenia-like cognitive inflexibility. Schizophr Res. 2023;252:198–205.

    Article  PubMed  CAS  Google Scholar 

  10. Ferguson B, Glick C, Huguenard JR. Prefrontal PV interneurons facilitate attention and are linked to attentional dysfunction in a mouse model of absence epilepsy. eLife. 2023;12:e78349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kim H, Ährlund-Richter S, Wang X, Deisseroth K, Carlén M. Prefrontal parvalbumin neurons in control of attention. Cell. 2016;164:208–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459:663–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gregoriou GG, Gotts SJ, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science. 2009;324:1207–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Buzsáki G, Wang X-J. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tamura M, Spellman TJ, Rosen AM, Gogos JA, Gordon JA. Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task. Nat Commun. 2017;8:2182.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karlsson MP, Tervo DG, Karpova AY. Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. Science. 2012;338:135–9.

    Article  PubMed  CAS  Google Scholar 

  18. Marton TF, Seifikar H, Luongo FJ, Lee AT, Sohal VS. Roles of prefrontal cortex and mediodorsal thalamus in task engagement and behavioral flexibility. J Neurosci. 2018;38:2569–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Senkowski D, Gallinat J. Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol Psychiatry. 2015;77:1010–9.

    Article  PubMed  Google Scholar 

  20. Toker L, Mancarci BO, Tripathy S, Pavlidis P. Transcriptomic evidence for alterations in astrocytes and parvalbumin interneurons in subjects with bipolar disorder and schizophrenia. Biol Psychiatry. 2018;84:787–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13.

    Article  PubMed  CAS  Google Scholar 

  22. Chung DW, Fish KN, Lewis DA. Pathological basis for deficient excitatory drive to cortical parvalbumin interneurons in schizophrenia. Am J Psychiatry. 2016;173:1131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dienel SJ, Fish KN, Lewis DA. The nature of prefrontal cortical GABA neuron alterations in schizophrenia: markedly lower somatostatin and parvalbumin gene expression without missing neurons. Am J Psychiatry. 2023;180:495–507.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Enwright III JF, Huo Z, Arion D, Corradi JP, Tseng G, Lewis DA. Transcriptome alterations of prefrontal cortical parvalbumin neurons in schizophrenia. Mol Psychiatry. 2018;23:1606–13.

    Article  PubMed  CAS  Google Scholar 

  25. Enwright JF, Sanapala S, Foglio A, Berry R, Fish KN, Lewis DA. Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology. 2016;41:2206–14.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Glausier J, Fish K, Lewis D. Altered parvalbumin basket cell inputs in the dorsolateral prefrontal cortex of schizophrenia subjects. Mol Psychiatry. 2014;19:30–36.

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez-Burgos G, Cho RY, Lewis DA. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry. 2015;77:1031–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Beasley CL, Reynolds GP. Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res. 1997;24:349–55.

    Article  PubMed  CAS  Google Scholar 

  29. Haenschel C, Bittner RA, Waltz J, Haertling F, Wibral M, Singer W, et al. Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci. 2009;29:9481–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci. 2003;23:6315–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hoftman GD, Datta D, Lewis DA. Layer 3 excitatory and inhibitory circuitry in the prefrontal cortex: developmental trajectories and alterations in schizophrenia. Biol Psychiatry. 2017;81:862–73.

    Article  PubMed  Google Scholar 

  32. Beneyto M, Lewis DA. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. Int J Dev Neurosci. 2011;29:295–304.

    Article  PubMed  Google Scholar 

  33. Kaar SJ, Angelescu I, Marques TR, Howes OD. Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J Neural Transm. 2019;126:1637–51.

    Article  PubMed  CAS  Google Scholar 

  34. Lewis DA, Cruz DA, Melchitzky DS, Pierri JN. Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am J Psychiatry. 2001;158:1411–22.

    Article  PubMed  CAS  Google Scholar 

  35. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35:57–67.

    Article  PubMed  CAS  Google Scholar 

  36. Satoh J, Tabira T, Sano M, Nakayama H, Tateishi J. Parvalbumin-immunoreactive neurons in the human central nervous system are decreased in Alzheimer’s disease. Acta Neuropathol. 1991;81:388–95.

    Article  PubMed  CAS  Google Scholar 

  37. Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012;149:708–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Arai H, Emson P, Mountjoy C, Carassco L, Heizmann C. Loss of parvalbumin-immunoreactive neurones from cortex in Alzheimer-type dementia. Brain Res. 1987;418:164–9.

    Article  PubMed  CAS  Google Scholar 

  39. Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Miettinen R. Subfield-and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer’s disease. Neuroscience. 1999;92:515–32.

    Article  PubMed  CAS  Google Scholar 

  41. Lanoue AC, Blatt GJ, Soghomonian J-J. Decreased parvalbumin mRNA expression in dorsolateral prefrontal cortex in Parkinson′ s disease. Brain Res. 2013;1531:37–47.

    Article  PubMed  CAS  Google Scholar 

  42. Lilascharoen V, Wang EH-J, Do N, Pate SC, Tran AN, Yoon CD, et al. Divergent pallidal pathways underlying distinct Parkinsonian behavioral deficits. Nat Neurosci. 2021;24:504–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kim, Thu DC, Tippett LJ, Oorschot DE, Hogg VM, Roxburgh R, et al. Cortical interneuron loss and symptom heterogeneity in Huntington disease. Ann Neurol. 2014;75:717–27.

    Article  PubMed  CAS  Google Scholar 

  44. Reiner A, Shelby E, Wang H, DeMarch Z, Deng Y, Guley NH, et al. Striatal parvalbuminergic neurons are lost in Huntington’s disease: implications for dystonia. Mov Disord. 2013;28:1691–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Shaikh TH, Kurahashi H, Saitta SC, O’Hare AM, Hu P, Roe BA, et al. Chromosome 22-specific low copy repeats and the 22q11. 2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet. 2000;9:489–501.

    Article  PubMed  CAS  Google Scholar 

  46. Edelmann L, Pandita RK, Morrow BE. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am J Hum Genet. 1999;64:1076–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Karayiorgou, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci. 1995;92:7612–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Maynard T, Haskell G, Peters A, Sikich L, Lieberman J, LaMantia A-S. A comprehensive analysis of 22q11 gene expression in the developing and adult brain. Proc Natl Acad Sci. 2003;100:14433–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Schneider M, Debbané M, Bassett AS, Chow EW, Fung WL, van den Bree M, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am J Psychiatry. 2014;171:627–39. https://doi.org/10.1176/appi.ajp.2013.13070864

    Article  PubMed  PubMed Central  Google Scholar 

  50. Karayiorgou M, Simon TJ, Gogos JA. 22q11. 2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci. 2010;11:402–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet. 2009;41:1223–7. https://doi.org/10.1038/ng.474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Simon TJ, Bish JP, Bearden CE, Ding L, Ferrante S, Nguyen V, et al. A multilevel analysis of cognitive dysfunction and psychopathology associated with chromosome 22q11. 2 deletion syndrome in children. Dev Psychopathol. 2005;17:753–84.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sobin C, Kiley-Brabeck K, Daniels S, Blundell M, Anyane-Yeboa K, Karayiorgou M. Networks of attention in children with the 22q11 deletion syndrome. Dev Neuropsychol. 2004;26:611–26.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stoddard J, Beckett L, Simon TJ. Atypical development of the executive attention network in children with chromosome 22q11. 2 deletion syndrome. J Neurodev Disord. 2011;3:76–85.

    Article  PubMed  Google Scholar 

  55. Bish JP, Ferrante SM, McDonald‐McGinn D, Zackai E, Simon TJ. Maladaptive conflict monitoring as evidence for executive dysfunction in children with chromosome 22q11. 2 deletion syndrome. Dev Sci. 2005;8:36–43.

    Article  PubMed  Google Scholar 

  56. Larsen KM, Pellegrino G, Birknow MR, Kjær TN, Baaré WFC, Didriksen M, et al. 22q11. 2 deletion syndrome is associated with impaired auditory steady-state gamma response. Schizophr Bull. 2018;44:388–97.

    Article  PubMed  Google Scholar 

  57. Mancini V, Rochas V, Seeber M, Grent T, Rihs TA, Latrèche C, et al. Oscillatory neural signatures of visual perception across developmental stages in individuals with 22q11. 2 deletion syndrome. Biol Psychiatry. 2022;92:407–18.

    Article  PubMed  CAS  Google Scholar 

  58. Mancini V, Rochas V, Seeber M, Roehri N, Rihs TA, Ferat V, et al. Aberrant developmental patterns of gamma-band response and long-range communication disruption in youths with 22q11. 2 deletion syndrome. Am J Psychiatry. 2022;179:204–15.

    Article  PubMed  Google Scholar 

  59. Al-Absi A-R, Thambiappa SK, Khan AR, Glerup S, Sanchez C, Landau AM, et al. Df (h22q11)/+ mouse model exhibits reduced binding levels of GABAA receptors and structural and functional dysregulation in the inhibitory and excitatory networks of hippocampus. Mol Cell Neurosci. 2022;122:103769.

    Article  PubMed  CAS  Google Scholar 

  60. Tripathi A, Spedding M, Schenker E, Didriksen M, Cressant A, Jay TM. Cognition-and circuit-based dysfunction in a mouse model of 22q11. 2 microdeletion syndrome: effects of stress. Transl Psychiatry. 2020;10:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Nilsson SR, Fejgin K, Gastambide F, Vogt MA, Kent BA, Nielsen V, et al. Assessing the cognitive translational potential of a mouse model of the 22q11. 2 microdeletion syndrome. Cereb Cortex. 2016;26:3991–4003.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nilsson SR, Heath CJ, Takillah S, Didienne S, Fejgin K, Nielsen V, et al. Continuous performance test impairment in a 22q11. 2 microdeletion mouse model: improvement by amphetamine. Transl Psychiatry. 2018;8:247.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kim, Hvoslef-Eide M, Nilsson SR, Johnson MR, Herbert BR, Robbins TW, et al. The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function. Psychopharmacology (Berl). 2015;232:3947–66. https://doi.org/10.1007/s00213-015-4081-0

    Article  PubMed  CAS  Google Scholar 

  64. Mar AC, Nilsson SR, Gamallo-Lana B, Lei M, Dourado T, Alsiö J, et al. MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology (Berl). 2017;234:2837–57.

    Article  PubMed  CAS  Google Scholar 

  65. Cornblatt BA, Keilp JG. Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr Bull. 1994;20:31–46.

    Article  PubMed  CAS  Google Scholar 

  66. Hooper SR, Curtiss K, Schoch K, Keshavan MS, Allen A, Shashi V. A longitudinal examination of the psychoeducational, neurocognitive, and psychiatric functioning in children with 22q11. 2 deletion syndrome. Res Dev Disabil. 2013;34:1758–69.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lewandowski KE, Shashi V, Berry PM, Kwapil TR. Schizophrenic‐like neurocognitive deficits in children and adolescents with 22q11 deletion syndrome. Am J Med Genet Part B: Neuropsychiatr Genet. 2007;144:27–36.

    Article  Google Scholar 

  68. Nestor PG, Faux SF, McCarley RW, Shenton ME, Sands SF. Measurement of visual sustained attention in schizophrenia using signal detection analysis and a newly developed computerized CPT task. Schizophr Res. 1990;3:329–32. https://doi.org/10.1016/0920-9964(90)90018-3

    Article  PubMed  CAS  Google Scholar 

  69. Nuechterlein, KH Vigilance in schizophrenia and related disorders. 1991

  70. Forwood SE, Cowell RA, Bussey TJ, Saksida LM. Multiple cognitive abilities from a single cortical algorithm. J Cogn Neurosci. 2012;24:1807–25.

    Article  PubMed  Google Scholar 

  71. Gaffan D. Against memory systems. Philos Trans R Soc London. Series B: Biol Sci. 2002;357:1111–21.

    Article  Google Scholar 

  72. Bussey TJ, Saksida LM. Object memory and perception in the medial temporal lobe: an alternative approach. Curr Opin Neurobiol. 2005;15:730–7.

    Article  PubMed  CAS  Google Scholar 

  73. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202. https://doi.org/10.1146/annurev.neuro.24.1.167

    Article  PubMed  CAS  Google Scholar 

  74. Panichello MF, Buschman TJ. Shared mechanisms underlie the control of working memory and attention. Nature. 2021;592:601–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Didriksen M, Fejgin K, Nilsson SR, Birknow MR, Grayton HM, Larsen PH, et al. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11. 2 microdeletion syndrome: a study in male mice. J Psychiatry Neurosci. 2017;42:48–58.

    Article  PubMed  Google Scholar 

  76. Madisen L, Mao T, Koch H, Zhuo J-m, Berenyi A, Fujisawa S, et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci. 2012;15:793–802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods. 2019;16:649–57.

    Article  PubMed  CAS  Google Scholar 

  78. Rajendran PS, Challis RC, Fowlkes CC, Hanna P, Tompkins JD, Jordan MC, et al. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat Commun. 2019;10:1944.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Horner AE, Heath CJ, Hvoslef-Eide M, Kent BA, Kim CH, Nilsson SRO, et al. The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc. 2013;8:1961–84. https://doi.org/10.1038/nprot.2013.122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Oomen CA, Hvoslef-Eide M, Heath CJ, Mar AC, Horner AE, Bussey TJ, et al. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat Protoc. 2013;8:2006–21. https://doi.org/10.1038/nprot.2013.124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Frey PW, Colliver JA. Sensitivity and responsivity measures for discrimination learning. Learn Motiv. 1973;4:327–42.

    Article  Google Scholar 

  82. Green, DM, & Swets, JA Signal detection theory and psychophysics (Vol. 1): New York: Wiley 1966.

  83. Skirzewski M, Princz-Lebel O, German-Castelan L, Crooks AM, Kim GK, Tarnow SH, et al. Continuous cholinergic-dopaminergic updating in the nucleus accumbens underlies approaches to reward-predicting cues. Nat Commun. 2022;13:7924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869.

    Article  PubMed  Google Scholar 

  85. Weisz N, Dohrmann K, Elbert T. The relevance of spontaneous activity for the coding of the tinnitus sensation. Prog Brain Res. 2007;166:61–70.

    Article  PubMed  Google Scholar 

  86. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2005;2:e153.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wieczerzak KB, Patel SV, MacNeil H, Scott KE, Schormans AL, Hayes SH, et al. Differential plasticity in auditory and prefrontal cortices, and cognitive-behavioral deficits following noise-induced hearing loss. Neuroscience. 2021;455:1–18.

    Article  PubMed  CAS  Google Scholar 

  88. Hayes SH, Schormans AL, Sigel G, Beh K, Herrmann B, Allman BL. Uncovering the contribution of enhanced central gain and altered cortical oscillations to tinnitus generation. Prog Neurobiol. 2021;196:101893.

    Article  PubMed  CAS  Google Scholar 

  89. Mukherjee A, Carvalho F, Eliez S, Caroni P. Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell. 2019;178:1387–1402. e1314.

    Article  PubMed  CAS  Google Scholar 

  90. Norman KJ, Koike H, McCraney SE, Garkun Y, Bateh J, Falk EN, et al. Chemogenetic suppression of anterior cingulate cortical neurons projecting to the visual cortex disrupts attentional behavior in mice. Neuropsychopharmacol Rep. 2021;41:207–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hvoslef-Eide, M, Nilsson, SR, Hailwood, JM, Robbins, TW, Saksida, LM, Mar, AC, et al. Effects of anterior cingulate cortex lesions on a continuous performance task for mice. Brain Neurosci Adv 2018, 2. https://doi.org/10.1177/2398212818772962

  92. Insel N, Barnes CA. Differential activation of fast-spiking and regular-firing neuron populations during movement and reward in the dorsal medial frontal cortex. Cereb Cortex. 2015;25:2631–47.

    Article  PubMed  Google Scholar 

  93. Jeong H, Kim D, Song M, Paik S-B, Jung MW. Distinct roles of parvalbumin-and somatostatin-expressing neurons in flexible representation of task variables in the prefrontal cortex. Prog Neurobiol. 2020;187:101773.

    Article  PubMed  CAS  Google Scholar 

  94. Kim D, Jeong H, Lee J, Ghim J-W, Her ES, Lee S-H, et al. Distinct roles of parvalbumin-and somatostatin-expressing interneurons in working memory. Neuron. 2016;92:902–15.

    Article  PubMed  CAS  Google Scholar 

  95. Pinto L, Dan Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron. 2015;87:437–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Caballero-Puntiverio, Lerdrup L, Grupe M, Larsen C, Dietz A, Andreasen J. Effect of ADHD medication in male C57BL/6J mice performing the rodent Continuous Performance Test. Psychopharmacology (Berl). 2019;236:1839–51.

    Article  PubMed  CAS  Google Scholar 

  97. Robinson ES. Blockade of noradrenaline re-uptake sites improves accuracy and impulse control in rats performing a five-choice serial reaction time tasks. Psychopharmacology (Berl). 2012;219:303–12.

    Article  PubMed  CAS  Google Scholar 

  98. Tomlinson A, Grayson B, Marsh S, Harte MK, Barnes SA, Marshall KM, et al. Pay attention to impulsivity: modelling low attentive and high impulsive subtypes of adult ADHD in the 5-choice continuous performance task (5C-CPT) in female rats. Eur Neuropsychopharmacol. 2014;24:1371–80. https://doi.org/10.1016/j.euroneuro.2014.04.008

    Article  PubMed  CAS  Google Scholar 

  99. Caballero-Puntiverio M, Fitzpatrick CM, Woldbye DP, Andreasen JT. Effects of amphetamine and methylphenidate on attentional performance and impulsivity in the mouse 5-Choice Serial Reaction Time Task. J Psychopharmacol. 2017;31:272–83.

    Article  PubMed  CAS  Google Scholar 

  100. Snitz BE, MacDonald III AW, Carter CS Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes 2006.

  101. Liu SK, Chiu C-H, Chang C-J, Hwang T-J, Hwu H-G, Chen WJ. Deficits in sustained attention in schizophrenia and affective disorders: stable versus state-dependent markers. Am J Psychiatry. 2002;159:975–82.

    Article  PubMed  Google Scholar 

  102. Filice F, Vörckel KJ, Sungur AÖ, Wöhr M, Schwaller B. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain. 2016;9:1–17.

    Article  Google Scholar 

  103. Asaad WF, Rainer G, Miller EK. Neural activity in the primate prefrontal cortex during associative learning. Neuron. 1998;21:1399–407.

    Article  PubMed  CAS  Google Scholar 

  104. Hussar CR, Pasternak T. Flexibility of sensory representations in prefrontal cortex depends on cell type. Neuron. 2009;64:730–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Mansouri FA, Matsumoto K, Tanaka K. Prefrontal cell activities related to monkeys’ success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog. J Neurosci. 2006;26:2745–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Parthasarathy A, Herikstad R, Bong JH, Medina FS, Libedinsky C, Yen S-C. Mixed selectivity morphs population codes in prefrontal cortex. Nat Neurosci. 2017;20:1770–9.

    Article  PubMed  CAS  Google Scholar 

  107. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, et al. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013;497:585–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wilent WB, Contreras D. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat Neurosci. 2005;8:1364–70.

    Article  PubMed  CAS  Google Scholar 

  109. Yoshimura Y, Callaway EM. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci. 2005;8:1552–9.

    Article  PubMed  CAS  Google Scholar 

  110. Roach JP, Churchland AK, Engel TA. Choice selective inhibition drives stability and competition in decision circuits. Nat Commun. 2023;14:147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Lee S-H, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature. 2012;488:379–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Hallock HL, Adiraju SS, Miranda-Barrientos J, McInerney JM, Oh S, DeBrosse AC, et al. Electrophysiological correlates of attention in the locus coeruleus–prelimbic cortex circuit during the rodent continuous performance test. Neuropsychopharmacology. 2024;49:521–31.

    Article  PubMed  Google Scholar 

  113. Cope ZA, Young JW. The five‐choice continuous performance task (5C‐CPT): a cross‐species relevant paradigm for assessment of vigilance and response inhibition in rodents. Curr Protoc Neurosci. 2017;78:9.56. 51–59.56. 18.

    Article  Google Scholar 

  114. Reinert S, Hübener M, Bonhoeffer T, Goltstein PM. Mouse prefrontal cortex represents learned rules for categorization. Nature. 2021;593:411–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Xu Y, Wang M-L, Tao H, Geng C, Guo F, Hu B, et al. ErbB4 in parvalbumin-positive interneurons mediates proactive interference in olfactory associative reversal learning. Neuropsychopharmacology. 2022;47:1292–303.

    Article  PubMed  CAS  Google Scholar 

  116. Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature. 2014;505:92–96.

    Article  PubMed  Google Scholar 

  117. Sparta DR, Hovelsø N, Mason AO, Kantak PA, Ung RL, Decot HK, et al. Activation of prefrontal cortical parvalbumin interneurons facilitates extinction of reward-seeking behavior. J Neurosci. 2014;34:3699–705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Salinas E, Sejnowski TJ. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci. 2001;2:539–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Gregoriou GG, Paneri S, Sapountzis P. Oscillatory synchrony as a mechanism of attentional processing. Brain Res. 2015;1626:165–82.

    Article  PubMed  CAS  Google Scholar 

  120. Santos-Silva T, dos Santos Fabris D, de Oliveira CL, Guimarães FS, Gomes FV. Prefrontal and hippocampal parvalbumin interneurons in animal models for schizophrenia: a systematic review and meta-analysis. Schizophr Bull. 2024;50:210–23.

    Article  PubMed  Google Scholar 

  121. Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer’s disease research, A mini-review. Neurosci Biobehav Rev. 2023;153:105370.

    Article  PubMed  CAS  Google Scholar 

  122. Hijazi S, Smit AB, van Kesteren RE. Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer’s disease. Mol Psychiatry. 2023;28:4954–67.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fung SJ, Fillman SG, Webster MJ, Weickert CS. Schizophrenia and bipolar disorder show both common and distinct changes in cortical interneuron markers. Schizophr Res. 2014;155:26–30.

    Article  PubMed  Google Scholar 

  124. Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci. 2000;97:13372–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Wöhr M, Orduz D, Gregory P, Moreno H, Khan U, Vörckel KJ, et al. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Transl Psychiatry. 2015;5:e525–e525.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Orduz D, Bischop DP, Schwaller B, Schiffmann SN, Gall D. Parvalbumin tunes spike‐timing and efferent short‐term plasticity in striatal fast spiking interneurons. J Physiol. 2013;591:3215–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Demeter E, Guthrie SK, Taylor SF, Sarter M, Lustig C. Increased distractor vulnerability but preserved vigilance in patients with schizophrenia: evidence from a translational Sustained Attention Task. Schizophr Res. 2013;144:136–41. https://doi.org/10.1016/j.schres.2013.01.003

    Article  PubMed  Google Scholar 

  128. Cao W, Lin S, Xia Q-q, Du Y-l, Yang Q, Zhang M-y, et al. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice. Neuron. 2018;97:1253–1260. e1257.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by through the Canada First Research Excellence Fund (CFREF), Brain Canada, the Canadian Institutes of Health Research (CHIR PJT 426966), the Natural Sciences and Engineering Research Council (NSERC RGPIN-2019-06102 RGPIN-2019-06087), the Canada Foundation for Innovation, and the Ontario Research Fund. All figures were created in BioRender. Dexter, T. (2026) https://BioRender.com/csljh96. LMS is the Canada Research Chair in Translational Cognitive Neuroscience and TJB is the Western Research Chair in Behavioural Neuroscience.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by T.D.D, T.J.B, L.M.S., and D.P. and supervised by D.P., T.J.B. and L.M.S. T.D.D performed the behavioral experiments, analyzed the data, generated the figures, and wrote the manuscript. T.D.D., T.J.B, and L.M.S edited the manuscript. A.L.S. conducted the electrophysiology experiments, analyzed the data, generated Fig. 4, and wrote the electrophysiology results and methods sections. D.P. wrote custom photometry and optogenetic analysis scripts and provided training and supervision. S.H. assisted in testing mice included in Supplementary Figure 5. T.D.D. and M.M.F.M. processed the brain tissue for histology. M.M.F.M. performed the immunohistochemistry and generated the images. B.L.A. provided insight throughout the project and supervised the electrophysiology experiments.

Corresponding author

Correspondence to Tyler D. Dexter.

Ethics declarations

Competing interests

T.J.B. and L.M.S. have established a series of targeted cognitive tests for animals, administered via touchscreen within a custom environment known as the “Bussey-Saksida touchscreen chamber”. Cambridge Enterprise, the technology transfer office of the University of Cambridge, supported commercialisation of the Bussey-Saksida chamber, culminating in a license to Campden Instruments. Any financial compensation received from commercialisation of the technology is fully invested in further touchscreen development and/or maintenance. T.D., D.P., A.L.S., S.H., M.M.F.M., B.L.A. declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dexter, T.D., Palmer, D., Schormans, A.L. et al. Prefrontal parvalbumin neurons as a target for enhancing cognition in non-pathological and 22q11.2 microdeletion syndrome mice. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03386-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03386-2

Search

Quick links