Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Associations between mosaic loss and schizophrenia or bipolar disorder of young age

Abstract

Mosaic chromosomal alterations (mCAs) accumulate in the brain tissues and are associated with psychiatric disorders. The association between mCAs in circulating blood and schizophrenia (SCZ) and bipolar disorders (BD) has not been fully evaluated. We detected mCAs from blood samples in 2470 SCZ, 3732 BD, and 177,773 control subjects. The associations between mCAs and SCZ or BD were evaluated using age-adjusted logistic regression models, further evaluated in age subgroups. We analyzed the associations between high cell fraction (CF) mosaic events (CF-mCAs >5% or CF-mCAs >10%) and SCZ or BD in the same way. Furthermore, we assessed the interaction between mCAs and genetic risk scores for SCZ or BD. Autosomal mCAs, especially mosaic loss events, increased in both SCZ and BD (SCZ; OR = 1.78, P = 4.9×10-6, BD; OR = 1.41, P = 0.0025). These associations were highlighted in the young-age subgroup (SCZ; OR = 7.01, P = 1.7×10-16, BD; OR = 4.01, P = 2.9×10-8). In addition, the effect sizes of losses increased in a CF-dependent manner in both SCZ and BD. Loss events with high cell fraction interacted with polygenic risk score in SCZ (P = 0.0098). SCZ or BD were characterized by the presence of a high burden of mosaic losses in blood, especially in young age, suggesting the common somatic pathophysiological mechanisms between these psychiatric diseases. The possible interaction between losses and PRS for SCZ supports the genetic and environmental cross-talk in SCZ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic view of mosaic calling and study design.
Fig. 2: Frequency of different detectable mosaic events stratified by age.
Fig. 3: Associations between autosomal mCAs or mosaic loss events and SCZ or BD stratified in each age subgroup.
Fig. 4: Associations between autosomal mCAs or mosaic loss events with CF-threshold and SCZ or BD.
Fig. 5: Combinatory associations of PRS and autosomal mCAs or mosaic loss events on SCZ.

Similar content being viewed by others

Data availability

Statistical codes are available from Chikashi Terao (ORCID 0000-0002-6452-4095) at any time, only on reasonable request. The Mosaic Chromosomal Alterations (MoChA) pipelines used for mosaic calling (mocha.wdl) are available at (https://github.com/freeseek/mochawdl). The genotype and IDAT data of BBJ used for this research was available at the website of the NBDC Human Database (https://humandbs.dbcls.jp/en/) of the Database Center for Life Science (DBCLS) / the Joint Support-Center for Data Science Research (DS) of the Research Organization of Information and Systems (ROIS). The dataset ID are JGAD000836 and JGAS000114.

References

  1. Robinson N, Bergen SE. Environmental Risk Factors for Schizophrenia and Bipolar Disorder and Their Relationship to Genetic Risk: Current Knowledge and Future Directions. Front Genet. 2021;12:686666.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Trubetskoy V, Pardinas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Vijg J, Dong X. Pathogenic Mechanisms of Somatic Mutation and Genome Mosaicism in Aging. Cell. 2020;182:12–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bizzotto S, Walsh CA. Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders. Nat Rev Neurosci. 2022;23:275–86.

    Article  PubMed  CAS  Google Scholar 

  5. Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, Franjic D, et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science. 2018;359:550–5.

    Article  PubMed  CAS  Google Scholar 

  6. Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, Kwon M, et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science. 2018;359:555–9.

    Article  PubMed  CAS  Google Scholar 

  7. D’Gama AM, Walsh CA. Somatic mosaicism and neurodevelopmental disease. Nat Neurosci. 2018;21:1504–14.

    Article  PubMed  Google Scholar 

  8. Liu X, Kamatani Y, Terao C. Genetics of autosomal mosaic chromosomal alteration (mCA). J Hum Genet. 2021;66:879–85.

    Article  PubMed  Google Scholar 

  9. Maury EA, Sherman MA, Genovese G, Gilgenast TG, Kamath T, Burris SJ, et al. Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions. Cell Genom. 2023;3:100356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chang K, Jian X, Wu C, Gao C, Li Y, Chen J et al. The contribution of mosaic chromosomal alterations to schizophrenia. Biol Psychiatry 2024;97:198–207.

  11. Maury EA, Jones A, Seplyarskiy V, Nguyen TTL, Rosenbluh C, Bae T, et al. Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes. Science. 2024;386:217–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ju YS, Martincorena I, Gerstung M, Petljak M, Alexandrov LB, Rahbari R, et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature. 2017;543:714–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ikeda M, Aleksic B, Kirov G, Kinoshita Y, Yamanouchi Y, Kitajima T, et al. Copy number variation in schizophrenia in the Japanese population. Biol Psychiatry. 2010;67:283–6.

    Article  PubMed  Google Scholar 

  14. Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I, et al. Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry. 2011;69:472–8.

    Article  PubMed  Google Scholar 

  15. Ikeda M, Takahashi A, Kamatani Y, Okahisa Y, Kunugi H, Mori N, et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol Psychiatry. 2018;23:639–47.

    Article  PubMed  CAS  Google Scholar 

  16. Nagai A, Hirata M, Kamatani Y, Muto K, Matsuda K, Kiyohara Y, et al. Overview of the BioBank Japan Project: Study design and profile. J Epidemiol. 2017;27:S2–S8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cannon M, Jones P, Huttunen MO, Tanskanen A, Huttunen T, Rabe-Hesketh S, et al. School performance in Finnish children and later development of schizophrenia: a population-based longitudinal study. Arch Gen Psychiatry. 1999;56:457–63.

    Article  PubMed  CAS  Google Scholar 

  18. Clemmensen L, Vernal DL, Steinhausen HC. A systematic review of the long-term outcome of early onset schizophrenia. BMC Psychiatry. 2012;12:150.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maglione JE, Thomas SE, Jeste DV. Late-onset schizophrenia: do recent studies support categorizing LOS as a subtype of schizophrenia? Curr Opin Psychiatry. 2014;27:173–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kennedy KP, Cullen KR, DeYoung CG, Klimes-Dougan B. The genetics of early-onset bipolar disorder: A systematic review. J Affect Disord. 2015;184:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Arnold I, Dehning J, Grunze A, Hausmann A. Old age bipolar disorder-epidemiology, aetiology and treatment. Medicina (Kaunas). 2021;57:587.

    Article  PubMed  Google Scholar 

  22. Terao C, Suzuki A, Momozawa Y, Akiyama M, Ishigaki K, Yamamoto K, et al. Chromosomal alterations among age-related haematopoietic clones in Japan. Nature. 2020;584:130–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Uchiyama S, Ishikawa Y, Ikari K, Honda S, Hikino K, Tanaka E, et al. Mosaic loss of chromosome Y characterises late-onset rheumatoid arthritis and contrasting associations of polygenic risk score based on age at onset. Ann Rheum Dis. 2025;84:1313–23.

    Article  PubMed  CAS  Google Scholar 

  24. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  25. Ito S, Liu X, Ishikawa Y, Conti DD, Otomo N, Kote-Jarai Z, et al. Androgen receptor binding sites enabling genetic prediction of mortality due to prostate cancer in cancer-free subjects. Nat Commun. 2023;14:4863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Delaneau O, Zagury JF, Robinson MR, Marchini JL, Dermitzakis ET. Accurate, scalable and integrative haplotype estimation. Nat Commun. 2019;10:5436.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ge T, Chen CY, Ni Y, Feng YA, Smoller JW. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat Commun. 2019;10:1776.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lam M, Chen CY, Li Z, Martin AR, Bryois J, Ma X, et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet. 2019;51:1670–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Higgins-Chen AT, Boks MP, Vinkers CH, Kahn RS, Levine ME. Schizophrenia and epigenetic aging biomarkers: increased mortality, reduced cancer risk, and unique clozapine effects. Biol Psychiatry. 2020;88:224–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Okazaki S, Numata S, Otsuka I, Horai T, Kinoshita M, Sora I, et al. Decelerated epigenetic aging associated with mood stabilizers in the blood of patients with bipolar disorder. Transl Psychiatry. 2020;10:129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science. 2015;350:94–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sherman MA, Rodin RE, Genovese G, Dias C, Barton AR, Mukamel RE, et al. Large mosaic copy number variations confer autism risk. Nat Neurosci. 2021;24:197–203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rodin RE, Dou Y, Kwon M, Sherman MA, D’Gama AM, Doan RN, et al. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat Neurosci. 2021;24:176–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hansda AK, Tiwari A, Dixit M. Current status and future prospect of FSHD region gene 1. J Biosci. 2017;42:345–53.

    Article  PubMed  CAS  Google Scholar 

  37. Olfson M, Stroup TS, Huang C, Wall MM, Crystal S, Gerhard T. Suicide risk in medicare patients with schizophrenia across the life span. JAMA Psychiatry. 2021;78:876–85.

    Article  PubMed  Google Scholar 

  38. Miller JN, Black DW. Bipolar disorder and suicide: a review. Curr Psychiatry Rep. 2020;22:6.

    Article  PubMed  Google Scholar 

  39. Otsuka I, Uchiyama S, Shirai T, Liu X, Takahashi M, Kamatani Y et al. Increased somatic mosaicism in autosomal and X chromosomes for suicide death. Mol Psychiatry 2025;30:881–8.

  40. Russo P, Prinzi G, Proietti S, Lamonaca P, Frustaci A, Boccia S, et al. Shorter telomere length in schizophrenia: Evidence from a real-world population and meta-analysis of most recent literature. Schizophr Res. 2018;202:37–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Agency for Medical Research and Development (AMED) grants 21ek0109555 (C.T.), 21tm0424220 (C.T.), 21ck0106642 (C.T.), 23ek0410114 (C.T.), 23tm0424225 (C.T.), JP21wm0425008 (N.I. and M.I.), JP23tm0524001 (M.I.), JP21wm0525024 (M.I.), 21tm0424220 (M.I.) and JP23dk0307123 (M.I.); the Japan Society for the Promotion of Science (JSPS) KAKENHI grant JP20H00462 (C.T.), JP21H02854 (M.I.), 24K02381 (M.I.) and JP22H03003 (N.I.); and Takeda Hosho Grants for Research in Medicine. The cartoons shown in Fig. 1 were created using Bio-Render. com. We thank the staff of BBJ for collecting and managing the samples and clinical information.

Author information

Authors and Affiliations

Authors

Contributions

M.I., N.I. and C.T. conceived the project. S.U. and C.T. analysed the data. G.G. developed MoChA pipelines for mosaic calling. T.S collected the detailed clinical information. S.U., T.S., X.L., Y.I., K.H., and C.T. wrote the manuscript. All authors have critically reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Nakao Iwata or Chikashi Terao.

Ethics declarations

Competing interests

S.U., T.S., X.L., Y.I., K.H., M.I., N.I. and C.T. have no conflicts of interest. G.G. declared competing interests, and patent application PCT/WO2019/079493 has been filed for the mosaic chromosomal alteration detection method used in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchiyama, S., Saito, T., Liu, X. et al. Associations between mosaic loss and schizophrenia or bipolar disorder of young age. Mol Psychiatry (2026). https://doi.org/10.1038/s41380-025-03397-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03397-z

Search

Quick links