Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attenuation of social preference and alteration of cortical neurons following adolescent cerebellar nuclei perturbation

Abstract

Connections between one of the main outputs of the cerebellar cortex, the lateral cerebellar nuclei (LCN), to reward-related circuits may explain social deficits resulting from cerebellar critical period perturbations. To examine the influence of LCN development on social behavior, local neural activity was manipulated in mice using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) from postnatal day 21–35. Adolescent social behavior was assessed using a three-chamber assay. Results revealed the LCN perturbation abolished male social preference. LCN manipulated mice were found to have less neural activation (cFos) in the ventral tegmental area, nucleus accumbens, and anterior cingulate cortex (ACC). Additionally, mice that received the excitatory DREADD perturbation showed increased dendritic complexity in the ACC. These results suggest a chronic perturbation in the LCN during juvenile and early adolescent development impacts social behavior and results in changes to cortical activity and structure observed in adolescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental timeline, chemogenetic approach, and three-chamber task.
Fig. 2: Sex-differences in social behavior.
Fig. 3: VTA cFos correlations with social behavior.
Fig. 4: cFos expression in the nucleus accumbens.
Fig. 5: Changes in ACC activity and dendritic complexity.
Fig. 6: Sex-differences in pyramidal neuron spines.
Fig. 7: Behavioral correlates with neural mechanisms.

Similar content being viewed by others

Data availability

The dataset is available at Arizona State University dataverse: https://doi.org/10.48349/ASU/4MT3XU and https://github.com/verpeutlab/Dentatesocial

Code availability

All experimental and analysis code is available at Arizona State University dataverse: https://doi.org/10.48349/ASU/4MT3XU and https://github.com/verpeutlab/Dentatesocial

References

  1. Badura A, Verpeut JL, Metzger JW, Pereira TD, Pisano TJ, Deverett B, et al. Normal cognitive and social development require posterior cerebellar activity. eLife. 2018;7:e36401.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Kelly E, Meng F, Fujita H, Morgado F, Kazemi Y, Rice L, et al. Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits. Nat Neurosci. 2020;23:1102–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kim Y, Umadevi Venkataraju K, Pradhan K, Mende C, Taranda J, Turaga S, et al. Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Rep. 2015;10:292–305.

    Article  CAS  PubMed  Google Scholar 

  4. Hur SW, Safaryan K, Yang L, Blair HT, Masmanidis SC, Mathews PJ, et al. Correlated signatures of social behavior in cerebellum and anterior cingulate cortex. eLife. 2024;12:RP88439.

  5. Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20:1744–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pisano TJ, Dhanerawala ZM, Kislin M, Bakshinskaya D, Engel EA, Hansen EJ. Homologous orginization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep. 2021;36:109721.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gao Z, Proietti-Onori M, Lin Z, Ruigrok TJH, Hoebeek FE, De Zeeuw CI, et al. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning. Neuron. 2016;89:645–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  9. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Dayan M, Olivito G, Molinari M, Cercignani M, Bozzali M, Loggio M. Impact of cerebellar atrophy on cortical gray matter and cerebellar peduncles as assessed by voxel-based morphometry and high angular resolution diffusion imaging. Funct Neurol. 2016;31:239–48.

    PubMed  Google Scholar 

  11. Olivito G, Clausi S, Laghi F, Maria Tedesco A, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017;16:283–92.

    Article  PubMed  Google Scholar 

  12. Kana RK, Maximo JO, Williams DL, Keller TA, Schipul SE, Cherkassky VL, et al. Aberrant functioning of the theory-of-mind network in children and adolescents with autism. Mol Autism. 2015;6:59.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hadland KA, Rushworth MFS, Gaffan D, Passingham RE. The effect of cingulate lesions on social behaviour and emotion. Neuropsychologia. 2003;41:919–31.

    Article  CAS  PubMed  Google Scholar 

  14. Guo B, Chen J, Chen Q, Ren K, Feng D, Mao H, et al. Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat Neurosci. 2019;22:1223–34.

    Article  CAS  PubMed  Google Scholar 

  15. Izquierdo A, Suda RK, Murray EA. Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J Neurosci. 2005;25:8534–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Machado CJ, Bachevalier J. The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behav Neurosci. 2006;120:761–86.

    Article  PubMed  Google Scholar 

  17. Toyoizumi T, Miyamoto H, Yazaki-Sugiyama Y, Atapour N, Hensch TK, Miller KK. A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity. Neuron. 2013;80:51–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hensch TK, Fagiolini M, Mataga N, Stryker M, Baekkeskov S, Kash SF. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science. 1998;282:1504–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ribot J, Breton R, Calvo CF, Moulard J, Ezan P, Zapata J, et al. Astrocytes close the mouse critical period for visual plasticity. Science. 2021;373:77–81.

    Article  CAS  PubMed  Google Scholar 

  21. Wiesel TN, Hubel DH. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol. 1963;26:1003–17.

    Article  CAS  PubMed  Google Scholar 

  22. Wang SS-H, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83:518–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gibson JM, Howland CP, Ren C, Howland C, Vernino A, Tsai PT. A critical period for development of cerebellar-mediated autism-relevant social behavior. J Neurosci. 2022;42:2804–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9:408.

    PubMed Central  PubMed  Google Scholar 

  25. Lyle TT, Verpeut JL. Adolescent cerebellar nuclei manipulation alters reversal learning and perineuronal net intensity independently in male and female mice. J Neurosci. 2025;45:e2182232024.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. van der Heijden ME, Gill JS, Sillitoe RV. Abnormal cerebellar development in autism spectrum disorders. Dev Neurosci. 2021;43:181–90.

    Article  PubMed  Google Scholar 

  27. Verpeut JL, Bergeler S, Kislin M, Townes FW, Klibaite U, Dhanerawala ZM, et al. Cerebellar contributions to a brainwide network for flexible behavior in mice. Commun Biol. 2023;6:605.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157:1535–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bariselli, Hörnberg S, Prévost-Solié H, Musardo C, Hatstatt-Burklé S, Scheiffele P, et al. Role of VTA dopamine neurons and neuroligin 3 in sociability traits related to nonfamiliar conspecific interaction. Nat Commun. 2018;9:3173.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Solié C, Girard B, Righetti B, Tapparel M, Bellone C. VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning through social prediction error. Nat Neurosci. 2022;25:86–97.

    Article  PubMed  Google Scholar 

  31. Northcutt KV, Nguyen JMK. Female juvenile play elicits Fos expression in dopaminergic neurons of the VTA. Behav Neurosci. 2014;128:178–86.

    Article  PubMed  Google Scholar 

  32. Peña CJ, DeBerardine M, Sullivan KE. Molecular heterogeneity and development of the ventral tegmental area. Curr Opin Behav Sci. 2025;61:101478.

    Article  Google Scholar 

  33. Novello M, Bosman LWJ, De Zeeuw CI. A systematic review of direct outputs from the cerebellum to the brainstem and diencephalon in mammals. Cerebellum. 2024;23:210–39.

    Article  PubMed  Google Scholar 

  34. Nio E, Pais Pereira P, Diekmann N, Petrenko M, Doubliez A, Ernst TE, et al. Human cerebellum and ventral tegmental area interact during extinction of learned fear. eLife. 2025;14:RP105399.

  35. Meola A, Comert A, Yeh F-C, Sivakanthan S, Fernandez-Miranda JC. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg. 2016;124:1406–12.

    Article  PubMed  Google Scholar 

  36. Ikai Y, Takada M, Shinonaga Y, Mizuno N. Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience. 1992;51:719–28.

    Article  CAS  PubMed  Google Scholar 

  37. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363:eaav0581.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Shan Q, Hu Y, Chen S, Tian Y. Nucleus accumbens dichotomically controls social dominance in male mice. Neuropsychopharmacology. 2022;47:776–87.

    Article  CAS  PubMed  Google Scholar 

  39. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron. 2012;76:790–803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Dreyer JK, Vander Weele CM, Lovic V, Aragona BJ. Functionally distinct dopamine signals in nucleus accumbens core and shell in the freely moving rat. J Neurosci. 2016;36:98–112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev. 2024;164:105809.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sackett DA, Saddoris MP, Carelli RM. Nucleus accumbens shell dopamine preferentially tracks information related to outcome value of reward. eNeuro. 2017;4:ENEURO.0058–17.2017.

    Article  PubMed Central  PubMed  Google Scholar 

  43. D’Ambra AF, Vlasov K, Jung Jung S, Ganesan S, Antzoulatos EG, Fioravante D. Cerebellar activation bidirectionally regulates nucleus accumbens core and medial shell. eLife. 2023;12:RP87252.

  44. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns M, Magnuson TR, et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 2004;3:287–302.

    Article  CAS  PubMed  Google Scholar 

  45. Pereira TD, Tabris N, Matsliah A, Turner DM, Li J, Ravindranath S, et al. SLEAP: A deep learning system for multi-animal pose tracking. Nat Methods. 2022;19:486–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wu R, Jiana X, Wu X, Pang J, Tang Y, Ren Z, et al. Interspecific differences in sociability, social novelty preference, anxiety-and depression-like behaviors between Brandt’s voles and C57BL/6J mice. Behav Processes. 2022.

  47. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron. 2012;74:858–73.

    Article  CAS  PubMed  Google Scholar 

  48. Lammel S, Kook Lim B, Ran C, Wui Huang K, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491:212–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kana RK, Libero LE, Moore MS. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys. Life Rev. 2011;8:410–37.

    Article  PubMed  Google Scholar 

  50. Pisano TJ, Dhanerawala ZM, Kislin M, Bakshinskaya D, Engel EA, Hansen EJ, et al. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep. 2021;36:109721.

  51. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28:41–51.

    Article  CAS  PubMed  Google Scholar 

  52. Wilson MD, Sethi S, Lein PJ, Keil KP. Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models. J Neurosci Methods. 2017;279:33–43.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Colyn L, Venzala E, Marco S, Perez-Otaño I, Tordera RM. Chronic social defeat stress induces sustained synaptic structural changes in the prefrontal cortex and amygdala. Behav Brain Res. 2019;373:112079.

    Article  CAS  PubMed  Google Scholar 

  54. Lin Y-C, Koleske AJ. Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annu Rev Neurosci. 2010;33:349–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev. 2002;39:29–54.

    Article  PubMed  Google Scholar 

  57. Gipson CD, Olive MF. Structural and functional plasticity of dendritic spines - root or result of behavior? Genes Brain Behav. 2017;16:101–17.

    Article  CAS  PubMed  Google Scholar 

  58. Chao OY, Marron Fernandez de Velasco E, Saurav Pathak S, Maitra S, Zhang H, Duvick L, et al. Targeting inhibitory cerebellar circuitry to alleviate behavioral deficits in a mouse model for studying idiopathic autism. Neuropsychopharmacology. 2020;45:1159–70.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Edge AL, Marple-Horvat DE, Apps R. Lateral cerebellum: functional localization within crus I and correspondence to cortical zones. Eur J Neurosci. 2003;18:1468–85.

    Article  PubMed  Google Scholar 

  60. Voogd, J & Bigaré, F Topographical distribution of olivary and cortico nuclear fibers in the cerebellum: A review. in The Inferior Olivary Nucleus (ed. Courville, J) 207-34 (New York: Raven Press, pp. 1980).

  61. Voogd J, Ruigrok TJ. Transverse and longitudinal patterns in the mammalian cerebellum. Prog Brain Res. 1997;114:21–37.

    Article  CAS  PubMed  Google Scholar 

  62. Vogt CC, Zipple MN, Sprockett DD, Miller CH, Hardy SX, Arthur MK, et al. Female behavior drives the formation of distinct social structures in C57BL/6J versus wild-derived outbred mice in field enclosures. BMC Biol. 2024;22:35.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Ramsey LA, Holloman FM, Hope BT, Shaham Y, Venniro M. Waving through the window: A model of volitional social interaction in female mice. Biol Psychiatry. 2022;91:988–97.

    Article  PubMed  Google Scholar 

  64. Harrison N, Lindholm AK, Dobay A, Halloran O, Manser A, König B. Female nursing partner choice in a population of wild house mice (Mus musculus domesticus). Front Zool. 2018;15:4.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Palanza P, Re L, Mainardi D, Brain PF, Parmigiani S. Male and female competitive strategies of wild house mice pairs (mus Musculus domesticus) confronted with intruders of different sex and age in artificial territories. Behaviour. 1996;133:863–82.

    Article  Google Scholar 

  66. Mackintosh JH. Territory formation by laboratory mice. Anim Behav. 1970;18:177–83.

    Article  Google Scholar 

  67. Rogers TD, Dickson PE, McKimm E, Heck DH, Goldowitz D, Blaha CD, et al. Reorganization of circuits underlying cerebellar modulation of prefrontal cortical dopamine in mouse models of autism spectrum disorder. Cerebellum. 2013;12:547–56.

    Article  CAS  PubMed  Google Scholar 

  68. Apps MAJ, Rushworth MFS, Chang SWC. The anterior cingulate gyrus and social cognition: Tracking the motivation of others. Neuron. 2016;90:692–707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Kitagawa K, Takemoto T, Seiriki K, Kasai A, Hashimoto H, Nakazawa T. Socially activated neurons in the anterior cingulate cortex are essential for social behavior in mice. Biochem Biophys Res Commun. 2024;726:150251.

    Article  CAS  PubMed  Google Scholar 

  70. Proaño SB, Krentzel AA, Meitzen J. Differential and synergistic roles of 17β-estradiol and progesterone in modulating adult female rat nucleus accumbens core medium spiny neuron electrophysiology. J Neurophysiol. 2020;123:2390–405.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Rodriguez-Echemendia PL, Carelli RM. Sex differences in oscillatory signaling dynamics in the prelimbic cortex and nucleus accumbens core during negative affect. Behav Brain Res. 2025;480:115404.

    Article  PubMed  Google Scholar 

  72. Liu J, Zubieta J-K, Heitzeg M. Sex differences in anterior cingulate cortex activation during impulse inhibition and behavioral correlates. Psychiatry Res. 2012;201:54–62.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Hidalgo-Lopez E, Noachtar I, Pletzer B. Hormonal contraceptive exposure relates to changes in resting state functional connectivity of anterior cingulate cortex and amygdala. Front Endocrinol (Lausanne). 2023;14:1131995.

    Article  PubMed  Google Scholar 

  74. Peter S. Dysfunctional cerebellar Purkinje cells contribute to autism-like behavior in Shank3 mutant mice. Nat Neurosci. 2016;19:622–30.

    Google Scholar 

  75. Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism. 2010;1:15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–42.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147:235–46.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Otazu GH, Li Y, Lodato Z, Elnasher A, Keever KM, Li Y, et al. Neurodevelopmental malformations of the cerebellum and neocortex in the Shank3 and Cntnap2 mouse models of autism. Neurosci Lett. 2021;765:136257.

    Article  CAS  PubMed  Google Scholar 

  79. Koekkoek SKE, Yamagushi K, Milojkovic BA, Dortland BR, Ruigrok TJH, Amex R, et al. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron. 2005;47:339–52.

    Article  CAS  PubMed  Google Scholar 

  80. Bruno CA, O’Brien C, Bryant S, Memes JI, Estrin DJ, Pizzano C, et al. pMAT: An open-source software suite for the analysis of fiber photometry data. Pharmacol Biochem Behav. 2021;201:173093.

    Article  CAS  PubMed  Google Scholar 

  81. Simpson EH, Akam T, Patriarchi T, Blanco-Pozo M, Burgeno L, Mohebi A, et al. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron. 2024;112:718–39.

    Article  CAS  PubMed  Google Scholar 

  82. Bridge MF, Wilson LR, Panda S, Stevanovic KD, Letsinger AC, McBride S, et al. FiPhA: an open-source platform for fiber photometry analysis. Neurophotonics. 2024;11:014305.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by: the Institute for Mental Health Research, Institute for Social Science Research, Nancy Eisenberg Junior Faculty scholar Award, Arizona Department of Health Sciences (ADHS14-052688), US Department of Health and Human Services and the state of Arizona (ADHS Grant No. CTR057001), National Institute on Aging (NIA) of the National Institutes of Health (NIH) (P30AG019610), Arizona Alzheimer’s Disease Research Center REC Fellows Program and Arizona Alzheimer’s Consortium. Figures were created with Biorender.com. We would like to thank Samantha Bowser for animal colony management, Federico Sanabria for statistical analysis discussions, and Mikhail Kislin for assistance with calcium signaling analysis.

Author information

Authors and Affiliations

Authors

Contributions

Tristan Lyle: Conceptualization, data analysis and curation, validation, investigation, visualization, methodology, writing, and project administration. Kristin Masho Elbeh: Data analysis, curation, and writing. Daniel Chambers: Data analysis and curation. Henrique Vierira: Data analysis and curation. Jessica L Verpeut: Conceptualization, data analysis and curation, funding acquisition, validation, investigation, visualization, methodology, writing, and project administration.

Corresponding authors

Correspondence to Tristan T. Lyle or Jessica L. Verpeut.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All study protocols and methods were approved by the Institutional Animal Care and Use Committee at Arizona State University (protocol #24-2052 R) in accordance with guidelines from the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyle, T.T., Masho Elbeh, K., Chambers, D. et al. Attenuation of social preference and alteration of cortical neurons following adolescent cerebellar nuclei perturbation. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03404-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03404-3

Search

Quick links