Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dysregulated GluA2-Y876 phosphorylation contributes to loss of synaptic upscaling in GRIP1 mutant mice with reduced sociability and increased repetitive behavior

Abstract

Loss of synaptic upscaling, a post-synaptic homeostatic plasticity, has been reported in mouse models of autism, but the underlying mechanism remains unknown. Glutamate receptor interacting protein 1 (GRIP1) binds AMPA receptor 2 (GluA2) through its PDZ domains 4-6 where gain-of-function variants were described in autism. We characterized mice carrying one variant, GRIP1-I586L (murine I507L), that shows increased binding with GluA2. Grip1-I507L mice exhibit impaired social interaction and increased repetitive behaviors, increased neuronal excitability and excitatory-to-inhibitory ratio in the medial prefrontal cortex. Grip1-I507L cortical neurons show a loss of synaptic upscaling to tetrodotoxin-induced inactivity. Basal phosphorylation of GluA2-Y876 is increased, which is consistent with increased binding to GluA2 while lack of further induction to inactivity contributes to loss of synaptic upscaling. Phosphorylation of GluA2-S880 that regulates Hebbian plasticity is not altered. These results support that gain-of-function GRIP1 variants are a novel cause of autism-related impaired social interaction and increased repetitive behavior and implicate that dysregulated phosphorylation of GluA2-Y876 is a novel mechanism for loss of synaptic upscaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Grip1-I507L Results in Increased Binding with GluA2.
Fig. 2: Rodent Behavioral Testing of Grip1-I507L Mice.
Fig. 3: Electrophysiological Characterization of the mPFC Layer 2/3 Pyramidal Neurons and Primary Cultured Neurons from WT and Grip1-I507L Mice.
Fig. 4: Loss of Synaptic Upscaling in Grip1-I507L Cortical Neurons.
Fig. 5: Altered GluA2-Y876 Phosphorylation in Grip1-I507L Cortical Neurons at Basal Condition and in Response to TTX Treatment.

Similar content being viewed by others

Data availability

Data supporting the key findings of this study is presented in the article and its supplementary information, and available from the corresponding author upon request. Correspondence and requests for materials should be addressed to twang9@jhmi.edu.

References

  1. Jeste S, Geschwind D. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol. 2014;10:74–81.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Masi A, DeMayo M, Glozier N, Guastella A. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull. 2017;33:183–93.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hyman S, Levy S, Myers S, COUNCIL ON CHILDREN WITH DISABILITIES, SECTION ON DEVELOPMENTAL AND BEHAVIORAL PEDIATRICS. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics. 2020;145:e20193447.

    Article  PubMed  Google Scholar 

  4. Turrigiano G, Leslie K, Desai N, Rutherford L, Nelson SB. Activity dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391:892–6.

    Article  CAS  PubMed  Google Scholar 

  5. Shepherd J, Huganir R. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol. 2007;23:613–43.

    Article  CAS  PubMed  Google Scholar 

  6. Turrigiano G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell. 2008;135:422–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diering G, Huganir R. The AMPA receptor code of synaptic plasticity. Neuron. 2018;100:314–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Z, Marro S, Zhang Y, Arendt K, Patzke C, Zhou B, et al. The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic-acid signaling. Sci Transl Med. 2018;19:eaar4338.

    Article  Google Scholar 

  9. Blackman M, Djukic D, Nelson S, Turrigiano G. A critical and cell-autonomous role for MeCP2 in synaptic scaling up. J Neurosci. 2012;32:13529–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pastuzyn E, Shepherd J. Activity-dependent arc expression and homeostatic synaptic plasticity are altered in neurons from a mouse model of angelman syndrome. Front Mol Neurosci. 2017;10:234.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tatavarty V, Pacheco A, Kuhnle C, Lin H, Koundinya P, Miska N, et al. Autism-Associated Shank3 is essential for homeostatic compensation in Rodent V1. Neuron. 2020;106:769–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan H, Queenan B, Huganir R. GRIP1 is required for homeostatic regulation of AMPAR trafficking. Proc Natl Acad Sci USA. 2015;112:10026–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tan HL, Chiu SL, Zhu Q, Huganir RL. GRIP1 regulates synaptic plasticity and learning and memory. Proc Natl Acad Sci USA. 2020;117:25085–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mao L, Takamiya K, Thomas G, Lin D, Huganir R. GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc Natl Acad Sci USA. 2010;107:19038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takamiya K, Mao L, Huganir R, Linden D. The glutamate receptor interacting protein family of GluR2-binding proteins is required for long term synaptic depression expression in cerebellar Purkinje cells. J Neurosci. 2008;28:5752–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong H, O’Brien R, Fung E, Lanahan A, Worley P, Huganir R. GRIP: a synaptic PDZ domain-containing protien that interacts with AMPA receptors. Nature. 1997;386:279–84.

    Article  CAS  PubMed  Google Scholar 

  17. Feng W, Shi Y, Li M, Zhang M. Tandem PDZ repeats in glutamate receptor interacting proteins have a novel mode of PDZ domain-mediated target binding. Nat Struct Biol. 2003;10:972–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gainey M, Tatavarty V, Nahmani M, Lin H, Turrigiano G. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade. Proc Natl Acad Sci USA. 2015;112:E3590–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mejias R, Adamczyk A, Anggono V, Niranjan T, Thomas G, Sharma K, et al. Gain-of-function glutamate receptor interacting protein 1 variants alter GluA2 recycling and surface distribution in patients with autism. Proc Natl Acad Sci USA. 2011;108:4920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han M, Mejias R, Chiu S, Rose R, Adamczyk A, Huganir H, et al. Mice lacking GRIP1/2 show increased social interactions and enhancedphosphorylation at GluA2-S880. Behav Brain Res. 2017;321:176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mejias R, Chiu S, Han M, Rose R, Gil-Infante A, Zhao Y, et al. Purkinje cell-specific Grip1/2 knockout mice show increased repetitive self-grooming and enhanced mGluR5 signaling in cerebellum. Neurobiol Dis. 2019;132:104602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niranjan T, Mejias-Estevez R, Han M, Huganir R, Wang T, editors. GRIP2-mediated AMPA signaling defects contribute to autism social behavioral deficits. 64th Annual Meeting of the American Society of Human Genetics; 2014; San Diego, California; October 18-25.

  23. Wu C, Tatavarty V, Jean Beltran P, Guerrero A, Keshishian H, Krug K, et al. A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling. eLife. 2022;11:e74277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yong A, Tan H, Zhu Q, Bygrave A, Johnson R, Huganir R. Tyrosine phosphorylation of the AMPA receptor subunit GluA2 gates homeostatic synaptic plasticity. Proc Natl acad Sci USA. 2020;117:4948–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stoner R, Chow M, Boyle M, Sunkin S, Mouton P, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014;370:1209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, et al. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun. 2020;11:5140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fortier A, Meisner O, Nair A, Chang S. Prefrontal circuits guiding social preference: Implications in autism spectrum disorder. Neurosci Biobehav Rev. 2022;141:104803.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Anggono V, Clem R, Huganir R. PICK1 loss of function occludes homeostatic synaptic scaling. J Neurosci. 2011;31:2188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chung H, Xia J, Scannevin R, Zhang X, Huganir R. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci. 2000;20:7258–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xia J, Chung H, Wihler C, Huganir R, Linden D. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/2 and PDZ domain-containing proteins. Neuron. 2000;28:499–510.

    Article  CAS  PubMed  Google Scholar 

  31. Nagy A, Gertsenstein M, Vintersten K, Behringer R. Manipulating the Mouse Embryo: A Laboratory Manual. Third ed. Cold Spring Harbor Press; 2003.

    Google Scholar 

  32. Adamczyk A, Mejias R, Takamiya K, Yocum J, Krasnova N, Calderon J, et al. GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum. behav Brain Res. 2012;229:265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim Y, Shin J, Kim S. Minhee Analysis Package: an integrated software package for detection and management of spontaneous synaptic events. Mol Brain. 2021;14:138.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Antoine MW, Langberg T, Schnepel P, Feldman DE. Increased excitation-inhibition ratio stabilizes synapse and circuit excitability in four autism mouse models. Neuron. 2019;101:648–61.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015;87:684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rein B, Tan T, Yang F, Wang W, Williams J, Zhang F, et al. Reversal of synaptic and behavioral deficits in a 16p11.2 duplication mouse model via restoration of the GABA synapse regulator Npas4. Mol Psychiatry. 2021;26:1967–79.

    Article  CAS  PubMed  Google Scholar 

  37. Yoo T, Cho H, Park H, Lee J, Kim E. Shank3 Exons 14-16 deletion in glutamatergic neurons leads to social and repetitive behavioral deficits associated with increased cortical layer 2/3 neuronal excitability. Front Cell Neurosci. 2019;13:458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee E, Lee J, Kim E. Excitation/inhibition imbalance in animal models of autism spectrum disorders. Biol Psychiatry. 2017;81:838–47.

    Article  PubMed  Google Scholar 

  39. Yi F, Danko T, Botelho SC, Patzke C, Pak C, Wernig M, et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science. 2016;352:aaf2669.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, Bonnan A, Bony G, Ferezou I, Pietropaolo S, Ginger M, et al. Dendritic channelopathies contribute to neocortical and sensory hyperexcitability in Fmr1(-/y) mice. Nat Neurosci. 2014;17:1701–9.

    Article  CAS  PubMed  Google Scholar 

  41. Mullins C, Fishell G, Tsien R. Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops. Neuron. 2016;89:1131–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Steinberg J, Takamiya K, Shen Y, Xia J, Rubio M, Yu S, et al. Targetied in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron. 2006;49:845–60.

    Article  CAS  PubMed  Google Scholar 

  43. Wyszynski M, Kim E, Dunah A, Passafaro M, Valtschanoff J, Serra-Pages C, et al. Interaction between GRIP and Liprin-alpha/SYD2 is required for AMPA receptor targeting. Neuron. 2002;34:39–52.

    Article  CAS  PubMed  Google Scholar 

  44. Dolen G, Bear MF. Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. J Physiol. 2008;586:1503–8.

    Article  CAS  PubMed  Google Scholar 

  45. Winden K, Ebrahimi-Fakhari D, Sahin M. Abnormal mTOR Activation in Autism. Annu Rev Neurosci. 2018;41:1–23.

    Article  CAS  PubMed  Google Scholar 

  46. Gainey MA, Feldman DE. Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160157.

    Article  PubMed  PubMed Central  Google Scholar 

  47. DeNardo LA, Berns DS, DeLoach K, Luo L. Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing. Nat Neurosci. 2015;18:1687–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anastasiades PG, Carter AG. Circuit organization of the rodent medial prefrontal cortex. Trends Neurosci. 2021;44:550–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van De Werd HJ, Rajkowska G, Evers P, Uylings HB. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct. 2010;214:339–53.

    Article  CAS  PubMed  Google Scholar 

  50. Radnikow G, Feldmeyer D. Layer- and cell type-specific modulation of excitatory neuronal activity in the neocortex. Front Neuroanat. 2018;12:1.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dong H, Zhang P, Song I, Petralia RS, Liao D, Huganir RL. Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. J Neurosci. 1999;19:6930–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Han M, Mejias R, Chiu SL, Rose R, Adamczyk A, Huganir R, et al. Mice lacking GRIP1/2 show increased social interactions and enhanced phosphorylation at GluA2-S880. Behav Brain Res. 2017;321:176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Turrigiano GG. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 1999;22:221–7.

    Article  CAS  PubMed  Google Scholar 

  54. Turrigiano GG, Nelson SB. Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol. 2000;10:358–64.

    Article  CAS  PubMed  Google Scholar 

  55. Kittler JT, Arancibia-Carcamo IL, Moss SJ. Association of GRIP1 with a GABA(A) receptor associated protein suggests a role for GRIP1 at inhibitory synapses. Biochem Pharmacol. 2004;68:1649–54.

    Article  CAS  PubMed  Google Scholar 

  56. Li RW, Serwanski DR, Miralles CP, Li X, Charych E, Riquelme R, et al. GRIP1 in GABAergic synapses. J Comp Neurol. 2005;488:11–27.

    Article  CAS  PubMed  Google Scholar 

  57. Xia J, Zhang X, Staudinger J, Huganir R. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron. 1999;22:179–87.

    Article  CAS  PubMed  Google Scholar 

  58. Xu J, Xia J. Structure and function of PICK1. Neurosignals. 2006;15:190–201.

    Article  CAS  PubMed  Google Scholar 

  59. Hanley J. PICK1: a multi-talented modulator of AMPA receptor trafficking. Pharmacol Ther. 2008;118:152–60.

    Article  CAS  PubMed  Google Scholar 

  60. Kim C, Chung H, Lee H, Huganir R. Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc Natl Acad Sci USA. 2001;98:11725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perez J, Khatri L, Chang C, Srivastava S, Osten P, Ziff E. PICK1 targets activated protein kinase C alpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci. 2001;21:5417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin D, Huganir R. PICK1 and phosphorylation of the glutamate receptor 2 (GluR2) AMPA receptor subunit regulates GluR2 recycling after NMDA receptor-induced internalization. J Neurosci. 2007;27:13903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Simon Foundation (#206683) and NIMH (RO1 MH112808 to R.H. and T.W.; P50 MH100024 to R.H.; R21 MH128765 to J.K.) and a KBRI basic research program (25-BR-02-02 and 25-BR-07-01) through Korea Brain Research Institute funded by Ministry of Science and ICT to J.K.

Author information

Authors and Affiliations

Authors

Contributions

M.H., H.L.T., J.K, T.W., and R.L.H. designed research; M.H., H.L.T., R.M., S.-L.C., and J.K. performed research; M.H., H.L.T., J.K. T.W. analyzed data; M.H., H.L.T. J.K., R.L.H. and T.W. wrote the paper.

Corresponding authors

Correspondence to Juhyun Kim, Richard L. Huganir or Tao Wang.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Tan, H.L., Mejías, R. et al. Dysregulated GluA2-Y876 phosphorylation contributes to loss of synaptic upscaling in GRIP1 mutant mice with reduced sociability and increased repetitive behavior. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03415-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03415-0

Search

Quick links