Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct cognitive and functional connectivity features from healthy cohorts can identify clinical obsessive-compulsive disorder

Abstract

Improving diagnostic accuracy of obsessive-compulsive disorder (OCD) using models of brain imaging data is a key goal of the field, but this objective is challenging due to the limited size and phenotypic depth of clinical datasets. Leveraging the phenotypic diversity in large non-clinical datasets such as the UK Biobank (UKBB), offers a potential solution to this problem. Nevertheless, it remains unclear whether classification models trained on non-clinical populations will generalise to individuals with clinical OCD. This question is also relevant for the conceptualisation of OCD; specifically, whether the symptomology of OCD exists on a continuum from normal to pathological. Here, we examined a recently published “meta-matching” model trained on functional connectivity data from five large normative datasets (N = 45,507) to predict cognitive, health and demographic variables. Specifically, we tested whether this model could classify OCD status in three independent datasets (N = 345). We found that the model could identify out-of-sample OCD individuals. Notably, the most predictive functional connectivity features mapped onto known cortico-striatal abnormalities in OCD and correlated with genetic brain expression maps previously implicated in the disorder. Further, the meta-matching model relied upon estimates of cognitive functions, such as cognitive flexibility and inhibition, to successfully predict OCD. These findings suggest that variability in non-clinical brain and behavioural features can discriminate clinical OCD status. These results support a dimensional and transdiagnostic conceptualisation of the brain and behavioural basis of OCD, with implications for research approaches and treatment targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Meta-matching model, prediction performance and brain features.
Fig. 2: Predictive weights within cortico-striatal circuits.
Fig. 3: Regional gene expression associated with meta-matching predictive feature weights.

Similar content being viewed by others

Data availability

Code used to generate the results are available on GitHub (https://github.com/ljhearne/CBN_MetaMatch_public). The version of the meta-matching model used in the current work is available online (V2.0; https://github.com/ThomasYeoLab/Meta_matching_models). De-identified participant data for research purposes are available on request for data collected at the Brisbane [18] and Melbourne sites. De-identified participant data for research purposes are available on request for data collected at the Seoul site from the original authors [19].

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. Arlingt VA. 2013. 2013.

  2. Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science. 2013;340:1234–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, López-Solà M, Hernández-Ribas R, et al. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry. 2009;66:1189–1200.

    Article  PubMed  Google Scholar 

  4. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008;32:525–49.

    Article  PubMed  Google Scholar 

  5. Piantadosi SC, Chamberlain BL, Glausier JR, Lewis DA, Ahmari SE. Lower excitatory synaptic gene expression in orbitofrontal cortex and striatum in an initial study of subjects with obsessive compulsive disorder. Mol Psychiatry. 2021;26:986–98.

    Article  PubMed  Google Scholar 

  6. Shephard E, Stern ER, van den Heuvel OA, Costa DL, Batistuzzo MC, Godoy PB, et al. Toward a neurocircuit-based taxonomy to guide treatment of obsessive–compulsive disorder. Mol Psychiatry. 2021;26:4583–604.

  7. Stein DJ, Costa DLC, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG, et al. Obsessive–compulsive disorder. Nat Rev Dis Primer. 2019;5:1–21.

    Article  Google Scholar 

  8. Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Poldrack RA, Huckins G, Varoquaux G Establishment of best practices for evidence for prediction: a review. JAMA Psychiatry. 2019. 27 November 2019. https://doi.org/10.1001/jamapsychiatry.2019.3671.

  10. Chen P, An L, Wulan N, Zhang C, Zhang S, Ooi LQR, et al. Multilayer meta-matching: Translating phenotypic prediction models from multiple datasets to small data. Imaging Neurosci. 2024;2:1–22.

    Article  Google Scholar 

  11. He T, An L, Chen P, Chen J, Feng J, Bzdok D, et al. Meta-matching as a simple framework to translate phenotypic predictive models from big to small data. Nat Neurosci. 2022;25:795–804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Strom NI, Soda T, Mathews CA, Davis LK. A dimensional perspective on the genetics of obsessive-compulsive disorder. Transl Psychiatry. 2021;11:1–11.

    Article  Google Scholar 

  13. Fullana MA, Vilagut G, Rojas-Farreras S, Mataix-Cols D, de Graaf R, Demyttenaere K, et al. Obsessive–compulsive symptom dimensions in the general population: Results from an epidemiological study in six European countries. J Affect Disord. 2010;124:291–9.

    Article  PubMed  CAS  Google Scholar 

  14. Robbins TW, Banca P, Belin D. From compulsivity to compulsion: the neural basis of compulsive disorders. Nat Rev Neurosci. 2024;25:313–33.

    Article  PubMed  CAS  Google Scholar 

  15. Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15:53–63.

    Article  PubMed  CAS  Google Scholar 

  16. Naze S, Hearne LJ, Roberts JA, Sanz-Leon P, Burgher B, Hall C, et al. Mechanisms of imbalanced frontostriatal functional connectivity in obsessive-compulsive disorder. Brain. 2023;146:1322–7.

    Article  PubMed  Google Scholar 

  17. Smit DJA, Cath D, Zilhão NR, Ip HF, Denys D, den Braber A, et al. Genetic meta-analysis of obsessive–compulsive disorder and self-report compulsive symptoms. Am J Med Genet B Neuropsychiatr Genet. 2020;183:208–16.

    Article  PubMed  CAS  Google Scholar 

  18. Cocchi L, Naze S, Robinson C, Webb L, Sonkusare S, Hearne LJ, et al. Effects of transcranial magnetic stimulation of the rostromedial prefrontal cortex in obsessive–compulsive disorder: a randomized clinical trial. Nat Ment Health. 2023;1:555–63.

    Article  Google Scholar 

  19. Kim M, Kwak S, Yoon YB, Kwak YB, Kim T, Cho KIK, et al. Functional connectivity of the raphe nucleus as a predictor of the response to selective serotonin reuptake inhibitors in obsessive-compulsive disorder. Neuropsychopharmacology. 2019;44:2073–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, et al. The WU-Minn human connectome project: an overview. Neuroimage. 2013;80:62–79.

    Article  PubMed  Google Scholar 

  21. Hearne LJ, Breakspear M, Harrison BJ, Hall CV, Savage HS, Robinson C, et al. Revisiting deficits in threat and safety appraisal in obsessive‐compulsive disorder. Hum Brain Mapp. 2023;44:6418–28.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019;16:111–6.

  23. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex N Y N 1991. 2018;28:3095–114.

    Google Scholar 

  24. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

    Article  PubMed  CAS  Google Scholar 

  25. Wang H-T, Meisler SL, Sharmarke H, Clarke N, Gensollen N, Markiewicz CJ, et al. Continuous evaluation of denoising strategies in resting-state fMRI connectivity using fMRIPrep and Nilearn. PLOS Comput Biol. 2024;20:e1011942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Volkow ND, Koob GF, Croyle RT, Bianchi DW, Gordon JA, Koroshetz WJ, et al. The conception of the ABCD study: From substance use to a broad NIH collaboration. Dev Cogn Neurosci. 2018;32:4–7.

    Article  PubMed  Google Scholar 

  28. Alexander LM, Escalera J, Ai L, Andreotti C, Febre K, Mangone A, et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci Data. 2017;4:170181.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nooner KB, Colcombe S, Tobe R, Mennes M, Benedict M, Moreno A, et al. The NKI-rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci. 2012;6:152.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Holmes AJ, Hollinshead MO, O’Keefe TM, Petrov VI, Fariello GR, Wald LL, et al. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. Sci Data. 2015;2:150031.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of sociodemographic and health-related characteristics of UK biobank participants with those of the general population. Am J Epidemiol. 2017;186:1026–34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Davis KAS, Coleman JRI, Adams M, Allen N, Breen G, Cullen B, et al. Mental health in UK Biobank – development, implementation and results from an online questionnaire completed by 157 366 participants: a reanalysis. BJPsych Open. 2020;6:e18.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  34. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

    Article  PubMed  Google Scholar 

  35. Pomponio R, Erus G, Habes M, Doshi J, Srinivasan D, Mamourian E, et al. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage. 2020;208:116450.

    Article  PubMed  Google Scholar 

  36. Ooi LQR, Chen J, Zhang S, Kong R, Tam A, Li J, et al. Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. NeuroImage. 2022;263:119636.

    Article  PubMed  Google Scholar 

  37. Haufe S, Meinecke F, Görgen K, Dähne S, Haynes J-D, Blankertz B, et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage. 2014;87:96–110.

    Article  PubMed  Google Scholar 

  38. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  39. Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, et al. Genome-wide analyses identify 30 loci associated with obsessive–compulsive disorder. Nat Genet. 2025:1–13.

  40. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Markello RD, Arnatkeviciute A, Poline J-B, Fulcher BD, Fornito A, Misic B. Standardizing workflows in imaging transcriptomics with the abagen toolbox. Elife. 2021;10:e72129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dear R, Wagstyl K, Seidlitz J, Markello RD, Arnatkevičiūtė A, Anderson KM, et al. Cortical gene expression architecture links healthy neurodevelopment to the imaging, transcriptomics and genetics of autism and schizophrenia. Nat Neurosci. 2024;27:1075–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hawrylycz M, Miller JA, Menon V, Feng D, Dolbeare T, Guillozet-Bongaarts AL, et al. Canonical genetic signatures of the adult human brain. Nat Neurosci. 2015;18:1832–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD. Generative modeling of brain maps with spatial autocorrelation. NeuroImage. 2020;220:117038.

    Article  PubMed  Google Scholar 

  45. Nadeau C, Bengio Y. Inference for the generalization error. Mach Learn. 2003;52:239–81.

    Article  Google Scholar 

  46. Bouckaert RR, Frank E Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms. In: Dai H, Srikant R, Zhang C, editors. Adv. Knowl. Discov. Data Min., Berlin, Heidelberg: Springer; 2004. p. 3–12.

  47. Chyzhyk D, Varoquaux G, Milham M, Thirion B. How to remove or control confounds in predictive models, with applications to brain biomarkers. GigaScience. 2022;11:giac014.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Smith SM, Nichols TE. Statistical challenges in “Big Data” human neuroimaging. Neuron. 2018;97:263–8.

    Article  PubMed  CAS  Google Scholar 

  49. Spisak T. Statistical quantification of confounding bias in machine learning models. GigaScience. 2022;11:giac082.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Robbins TW, Vaghi MM, Banca P. Obsessive-compulsive disorder: puzzles and prospects. Neuron. 2019;102:27–47.

    Article  PubMed  CAS  Google Scholar 

  51. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536:171–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mahjani B, Bey K, Boberg J, Burton C. Genetics of obsessive-compulsive disorder. Psychol Med. 2021;51:2247–59.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Posthuma D. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol Psychiatry. 2018;23:1181–8.

    Article  Google Scholar 

  54. Mataix-Cols D, do Rosario-Campos MC, Leckman JF. A multidimensional model of obsessive-compulsive disorder. Am J Psychiatry. 2005;162:228–38.

    Article  PubMed  Google Scholar 

  55. Gillan CM, Fineberg NA, Robbins TW. A trans-diagnostic perspective on obsessive-compulsive disorder. Psychol Med. 2017;47:1528–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–51.

    Article  PubMed  Google Scholar 

  57. Kebets V, Holmes AJ, Orban C, Tang S, Li J, Sun N, et al. Somatosensory-motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology. Biol Psychiatry. 2019;86:779–91.

    Article  PubMed  Google Scholar 

  58. Abramovitch A, Short T, Schweiger A. The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clin Psychol Rev. 2021;86:102007.

    Article  PubMed  Google Scholar 

  59. Wright L, Lipszyc J, Dupuis A, Thayapararajah SW, Schachar R. Response inhibition and psychopathology: A meta-analysis of go/no-go task performance. J Abnorm Psychol. 2014;123:429–39.

    Article  PubMed  Google Scholar 

  60. Gillan CM, Morein-Zamir S, Urcelay GP, Sule A, Voon V, Apergis-Schoute AM, et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol Psychiatry. 2014;75:631–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rigoux L, Stephan KE, Petzschner FH. Beliefs, compulsive behavior and reduced confidence in control. PLOS Comput Biol. 2024;20:e1012207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chopra S, Dhamala E, Lawhead C, Ricard JA, Orchard ER, An L, et al. Generalizable and replicable brain-based predictions of cognitive functioning across common psychiatric illness. Sci Adv. 2024;10:eadn1862.

  63. Abramovitch A, Abramowitz JS, Mittelman A. The neuropsychology of adult obsessive–compulsive disorder: a meta-analysis. Clin Psychol Rev. 2013;33:1163–71.

    Article  PubMed  Google Scholar 

  64. Banca P, Herrojo Ruiz M, Gonzalez-Zalba MF, Biria M, Marzuki AA, Piercy T, et al. Action sequence learning, habits, and automaticity in obsessive-compulsive disorder. eLife. 2024;12:RP87346.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Marzuki AA, Tomić I, Ip SHY, Gottwald J, Kanen JW, Kaser M, et al. Association of environmental uncertainty with altered decision-making and learning mechanisms in youths with obsessive-compulsive disorder. JAMA Netw Open. 2021;4:e2136195–e2136195.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Snyder HR, Kaiser RH, Warren SL, Heller W. Obsessive-compulsive disorder is associated with broad impairments in executive function: a meta-analysis. Clin Psychol Sci. 2015;3:301–30.

    Article  PubMed  Google Scholar 

  67. van den Heuvel OA, van Wingen G, Soriano-Mas C, Alonso P, Chamberlain SR, Nakamae T, et al. Brain circuitry of compulsivity. Eur Neuropsychopharmacol. 2016;26:810–27.

    Article  PubMed  Google Scholar 

  68. Figee M, Luigjes J, Smolders R, Valencia-Alfonso C-E, van Wingen G, de Kwaasteniet B, et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat Neurosci. 2013;16:386–7.

    Article  PubMed  CAS  Google Scholar 

  69. Bruin WB, Abe Y, Alonso P, Anticevic A, Backhausen LL, Balachander S, et al. The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Mol Psychiatry. 2023:1–13.

  70. Bu X, Hu X, Zhang L, Li B, Zhou M, Lu L, et al. Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder. Transl Psychiatry. 2019;9:17.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Buckner RL, Andrews-Hanna JR, Schacter DL. The Brain’s default network. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  72. Coles ME, Heimberg RG, Frost RO, Steketee G. Not just right experiences and obsessive–compulsive features:: Experimental and self-monitoring perspectives. Behav Res Ther. 2005;43:153–67.

    Article  PubMed  Google Scholar 

  73. Ahmari SE, Risbrough VB, Geyer MA, Simpson HB. Impaired sensorimotor gating in unmedicated adults with obsessive–compulsive disorder. Neuropsychopharmacology. 2012;37:1216–23.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kawabe H, Sakisaka T, Yasumi M, Shingai T, Izumi G, Nagano F, et al. A novel rabconnectin‐3‐binding protein that directly binds a GDP/GTP exchange protein for Rab3A small G protein implicated in Ca2+‐dependent exocytosis of neurotransmitter. Genes Cells. 2003;8:537–46.

    Article  PubMed  CAS  Google Scholar 

  75. Zhuo B, Zhu L, Yao C, Wang X, Li S, Wang R, et al. ADCK1 is a potential therapeutic target of osteosarcoma. Cell Death Dis. 2022;13:954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology. 2021;46:176–90.

    Article  PubMed  Google Scholar 

  77. Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big Data. 2016;3:1–40.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian NHMRC (GN2001283 and GNT2027597, L.C). A.Z. and L.J.H were supported by research fellowships from the NHMRC (APP1118153, APP1194070, respectively). PBF is supported by a National Health and Medical Research Council of Australia Investigator grant (1193596). BTTY is supported by the NUS Yong Loo Lin School of Medicine (NUHSRO/2020/124/TMR/LOA), the Singapore National Medical Research Council (NMRC) LCG (OFLCG19May-0035), NMRC CTG-IIT (CTGIIT23jan-0001), NMRC OF-IRG (OFIRG24jan-0006; OFIRG24jul-0049), NMRC STaR (STaR20nov-0003), Singapore Ministry of Health (MOH) Centre Grant (CG21APR1009), the United States National Institutes of Health (R01MH133334 & 2R01MH120080) and the Singapore National Research Foundation (NRF) Investigatorship (NRFI10-2024-0014).

Author information

Authors and Affiliations

Authors

Contributions

LJH and LC conceptualised the research. LW, PBF, OWM, YET, MB, CVH, MK, JSK, & LC contributed to data collection and/or data curation. BTTY developed methodology used in the analysis. LJH performed the analysis and wrote the first draft. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Luke J. Hearne.

Ethics declarations

Competing interests

L.C., L.J.H, and A.Z. are involved in a clinical neuromodulation centre (Queensland Neurostimulation Centre [QNC] as trading for Australian Brain Foundation) that offers neuroimaging-guided neurotherapeutics. LJH, AZ, and LC are not paid by QNC. This centre had no role in this study. L.C. serves as a co-inventor on a patent application by the National University of Singapore that covers neuroimaging-based personalised TMS. LC, LJH, and AZ are also involved in the development of imaging-based personalized TMS for depression with ANT Neuro. The provisional patent and ANT Neuro products are not directly related to this work. In the last 3 years PBF has received equipment for research from Neurosoft and Nexstim. He has served on a scientific advisory board for Magstim and received speaker fees from Otsuka. He has also acted as a founder and board member for TMS Clinics Australia and Resonance Therapeutics. BTTY holds shares and is a co-founder of B1neuro. The content in this manuscript is unrelated to the activities of B1neuro.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hearne, L.J., Yeo, B.T.T., Webb, L. et al. Distinct cognitive and functional connectivity features from healthy cohorts can identify clinical obsessive-compulsive disorder. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03416-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03416-z

Search

Quick links