Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extended amygdala corticotropin-releasing hormone neurons regulate sexually dimorphic changes in pair bond formation following social defeat in prairie voles (Microtus ochrogaster)

Abstract

The neurobiological mechanisms underlying the connection between anxiety brought on by social stressors and the negative impact on relationship formation have remained elusive. In order to address this question, we used the social defeat model in the socially monogamous prairie vole to investigate the impact of this stress on pair bond formation. Social defeat experience inhibited partner preference formation in males but promoted preference in females. Furthermore, pair bonding increased corticotropin-releasing hormone (CRH) expression in the bed nucleus of the stria terminalis (BNST) in male prairie voles, while defeat experience increased BNST CRH expression in females. Chemogenetic excitation of BNST CRH neurons during a short cohabitation with a new partner promoted a partner preference in stress-naïve prairie voles. Interestingly, chemogenetic inhibition of BNST CRH neurons during cohabitation with a new partner blocked partner preference in stress-naïve males but promoted preference in defeated males. Inhibition of BNST CRH neurons also blocked partner preference in stress-naïve females but did not alter preference behavior in defeated females. This study revealed sexual dimorphism in not only the impact of social defeat on pair bond formation, but also in the role BNST CRHergic neurons play in regulating changes in pair bonding following social conflict.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of cohabitation with an opposite-sex partner with or with defeat experience on BNST CRH mRNA expression.
Fig. 2: Impact of social defeat on opposite-sex social investigation and pair bond formation.
Fig. 3: Experimental design for chemogenetic manipulation of BNST CRHergic neurons.
Fig. 4: Effect of BNST CRHergic manipulation on partner preference in stress-naive and defeated male prairie voles.
Fig. 5: Effect of BNST CRHergic manipulation on partner preference in stress-naive and defeated female prairie voles.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci. 2015;17:327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, et al. Anxiety disorders. Nat Rev Dis Primers. 2017;3:17024.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brousse G, Fontana L, Ouchchane L, Boisson C, Gerbaud L, Bourguet D, et al. Psychopathological features of a patient population of targets of workplace bullying. Occup Med. 2008;58:122–28.

    Article  Google Scholar 

  4. Gladstone GL, Parker GB, Malhi GS. Do bullied children become anxious and depressed adults?: A cross-sectional investigation of the correlates of bullying and anxious depression. J Nerv Ment Dis. 2006;194:201–08.

    Article  PubMed  Google Scholar 

  5. Pontillo M, Tata MC, Averna R, Demaria F, Gargiullo P, Guerrera S, et al. Peer victimization and onset of social anxiety disorder in children and adolescents. Brain Sci. 2019;9:132.

  6. Doyle FL, Baillie AJ, Crome E. Examining whether social anxiety influences satisfaction in romantic relationships. Behav Change. 2021;38:263–75.

    Article  Google Scholar 

  7. Porter E, Chambless DL. Social anxiety and social support in romantic relationships. Behav Ther. 2017;48:335–48.

    Article  PubMed  Google Scholar 

  8. Davila J, Beck JG. Is social anxiety associated with impairment in close relationships? A preliminary investigation. Behav Ther. 2002;33:427–46.

    Article  Google Scholar 

  9. Wittchen HU, Jacobi F. Size and burden of mental disorders in Europe-A critical review and appraisal of 27 studies. Eur Neuropsychopharmacol. 2005;15:357–76.

    Article  CAS  PubMed  Google Scholar 

  10. Amati V, Meggiolaro S, Rivellini G, Zaccarin S. Social relations and life satisfaction: The role of friends. Genus 2018;74:7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eng PM, Rimm EB, Fitzmaurice G, Kawachi I. Social ties and change in social ties in relation to subsequent total and cause-specific mortality and coronary heart disease incidence in men. Am J Epidemiol. 2002;155:700–09.

    Article  PubMed  Google Scholar 

  12. Ozbay F, Johnson C, Dimoulas E, Morgan C, Southwick S. Social support and resilience to stress: From neurobiology to clinical practice. Psychiatry. 2007;4:35–40.

    PubMed  PubMed Central  Google Scholar 

  13. Goode TD, Ressler RL, Acca GM, Miles OW, Maren S. Bed nucleus of the stria terminalis regulates fear to unpredictable threat signals. Elife 2019;8:e46525.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lebow MA, Chen A. Overshadowed by the amygdala: The bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry. 2016;21:450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goode TD, Maren S. Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn Mem. 2017;24:480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pedersen WS, Muftuler LT, Larson CL. Disentangling the effects of novelty, valence and trait anxiety in the bed nucleus of the stria terminalis, amygdala and hippocampus with high resolution 7 T fMRI. Neuroimage 2017;156:293–301.

    Article  PubMed  Google Scholar 

  17. Clauss JA, Avery SN, Benningfield MM, Blackford JU. Social anxiety is associated with BNST response to unpredictability. Depress Anxiety. 2019;36:666–75.

    Article  PubMed  Google Scholar 

  18. Bas-Hoogendam JM, Westenberg PM. Imaging the socially-anxious brain: Recent advances and future prospects. F1000Res. 2020;9.

  19. Jennings JH, Sparta DR, Stamatakis AM, Ung RL, Pleil KE, Kash TL, et al. Distinct extended amygdala circuits for divergent motivational states. Nature 2013;496:224–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Emmons R, Sadok T, Rovero NG, Belnap MA, Henderson HJM, Quan AJ, et al. Chemogenetic manipulation of the bed nucleus of the stria terminalis counteracts social behavioral deficits induced by early life stress in C57BL/6 J mice. J Neurosci Res. 2021;99:90–109.

    Article  CAS  PubMed  Google Scholar 

  21. Gossman KR, Dykstra B, Garcia BH, Swopes AP, Kimbrough A, Smith AS. Pair bond-induced affiliation and aggression in male prairie voles elicit distinct functional connectivity in the social decision-making network. Front Neurosci. 2021;15:748431.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perkins AE, Woodruff ER, Chun LE, Spencer RL, Varlinskaya E, Deak T. Analysis of c-Fos induction in response to social interaction in male and female Fisher 344 rats. Brain Res. 2017;1672:113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McHenry JA, Rubinow DR, Stuber GD. Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Front Neuroendocrinol. 2015;38:65–72.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sajdyk T, Johnson P, Fitz S, Shekhar A. Chronic inhibition of GABA synthesis in the bed nucleus of the stria terminalis elicits anxiety-like behavior. J Psychopharmacol. 2008;22:633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Claro F, Segovia S, Guilamon A, Del Abril A. Lesions in the medial posterior region of the BST impair sexual behavior in sexually experienced and inexperienced male rats. Brain Res Bull. 1995;36:1–10.

    Article  CAS  PubMed  Google Scholar 

  26. Kim Y, Venkataraju KU, Pradhan K, Mende C, Taranda J, Turaga SC, et al. Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Rep. 2015;10:292–305.

    Article  CAS  PubMed  Google Scholar 

  27. Martinez LA, Petrulis A. The bed nucleus of the stria terminalis is critical for sexual solicitation, but not for opposite-sex odor preference, in female Syrian hamsters. Horm Behav. 2011;60:651–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cushing BS, Mogekwu N, Le W-W, Hoffman GE, Carter CS. Cohabitation induced Fos immunoreactivity in the monogamous prairie vole. Brain Res. 2003;965:203–11.

    Article  CAS  PubMed  Google Scholar 

  29. Duque-Wilckens N, Torres LY, Yokoyama S, Minie VA, Tran AM, Petkova SP, et al. Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc Natl Acad Sci USA. 2020;117:26406–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Albrechet-Souza L, Viola TW, Grassi-Oliveira R, Miczek KA, de Almeida RMM. Corticotropin releasing factor in the bed nucleus of the stria terminalis in socially defeated and non-stressed mice with a history of chronic alcohol intake. Front Pharmacol. 2017;8:762.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gafford GM, Ressler KJ. GABA and NMDA receptors in CRF neurons have opposing effects in fear acquisition and anxiety in central amygdala vs. bed nucleus of the stria terminalis. Horm Behav. 2015;76:136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu P, Maita I, Phan ML, Gu E, Kwok C, Dieterich A, et al. Early-life stress alters affective behaviors in adult mice through persistent activation of CRH-BDNF signaling in the oval bed nucleus of the stria terminalis. Transl Psychiatry. 2020;10:396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dedic N, Kuhne C, Gomes KS, Hartmann J, Ressler KJ, Schmidt MV, et al. Deletion of CRH From GABAergic forebrain neurons promotes stress resilience and dampens stress-induced changes in neuronal activity. Front Neurosci. 2019;13:986.

    Article  PubMed  PubMed Central  Google Scholar 

  34. DeVries AC, Guptaa T, Cardillo S, Cho M, Carter CS. Corticotropin-releasing factor induces social preferences in male prairie voles. Psychoneuroendocrinology 2002;27:705–14.

    Article  CAS  PubMed  Google Scholar 

  35. Heinrichs SC. Modulation of social learning in rats by brain corticotropin-releasing factor. Brain Res. 2003;994:107–14.

    Article  CAS  PubMed  Google Scholar 

  36. Heinrichs SC, Min H, Tamraz S, Carmouche M, Boehme SA, Vale WW. Anti-sexual and anxiogenic behavioral consequences of corticotropin-releasing factor overexpression are centrally mediated. Psychoneuroendocrinology 1997;22:215–24.

    Article  CAS  PubMed  Google Scholar 

  37. Kasahara M, Groenink L, Kas MJ, Bijlsma EY, Olivier B, Sarnyai Z. Influence of transgenic corticotropin-releasing factor (CRF) over-expression on social recognition memory in mice. Behav Brain Res. 2011;218:357–62.

    Article  CAS  PubMed  Google Scholar 

  38. Bosch OJ, Nair HP, Ahern TH, Neumann ID, Young LJ. The CRF system mediates increased passive stress-coping behavior following the loss of a bonded partner in a monogamous rodent. Neuroendocrinology 2009;34:1406–15.

    CAS  Google Scholar 

  39. Hale LH, Tickerhoof MC, Smith AS. Chronic intranasal oxytocin reverses stress-induced social avoidance in female prairie voles. Neuropharmacology. 2021;198:108770.

  40. Tickerhoof MC, Hale LH, Butler MJ, Smith AS. Regulation of defeat-induced social avoidance by medial amygdala DRD1 in male and female prairie voles. Psychoneuroendocrinology 2020;113:104542.

    Article  CAS  PubMed  Google Scholar 

  41. Smith AS, Lieberwirth C, Wang Z. Behavioral and physiological responses of female prairie voles to various stressful conditions. Stress 2013;16:531–39.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nerio-Morales LK, Boender AJ, Young LJ, Lamprea MR, Smith AS. Limbic oxytocin receptor expression alters molecular signaling and social avoidance behavior in female prairie voles (Microtus ochrogaster). Front Neurosci. 2024;18:1409316.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gobrogge K, Wang Z. The ties that bond: Neurochemistry of attachment in voles. Curr Opin Neurobiol. 2016;38:80–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arai A, Hirota Y, Miyase N, Miyata S, Young LJ, Osako Y, et al. A single prolonged stress paradigm produces enduring impairments in social bonding in monogamous prairie voles. Behav Brain Res. 2016;315:83–93.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gossman KR, Lowe CS, Kirckof A, Vanmeerhaeghe S, Smith AS. Corticotropin-releasing factor and GABA in the ventral tegmental area modulate partner preference formation in male and female prairie voles (Microtus ochrogaster). Front Neurosci. 2024;18:1430447.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Williams JR, Catania KC, Carter CS. Development of partner preferences in female prairie voles (Microtus ochrogaster): The role of social and sexual experience. Horm Behav. 1992;26:339–49.

    Article  CAS  PubMed  Google Scholar 

  47. Beery AK. Familiarity and mate preference assessment with the partner preference test. Curr Protoc. 2021;1:e173.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grieb ZA, Vitale EM, Morrell JI, Lonstein JS, Pereira M. Decreased mesolimbic dopaminergic signaling underlies the waning of maternal caregiving across the postpartum period in rats. Psychopharmacology 2020;237:1107–19.

    Article  CAS  PubMed  Google Scholar 

  49. Vitale EM, Kirckof A, Smith AS. Partner-seeking and limbic dopamine system are enhanced following social loss in male prairie voles (Microtus ochrogaster). Genes, Brain, Behav. 2023;22:e12861.

    Article  CAS  PubMed  Google Scholar 

  50. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–08.

    Article  CAS  PubMed  Google Scholar 

  51. Insel TR, Preston S, Winslow JT. Mating in the monogamous male: Behavioral consequences. Physiol Behav. 1995;57:615–27.

    Article  CAS  PubMed  Google Scholar 

  52. Williams JR, Carter CS, Insel TR. Partner preference development in female prairie voles is facilitated by mating or the central infusion of oxytocin. Annals of the New York Academy of Sciences: ACTH and Related Peptides: Structure. Regul Act. 1992;652:487–89.

    CAS  Google Scholar 

  53. DeVries AC, DeVries MB, Taymans SE, Carter CS. Modulation of pair bonding in female prairie voles (Microtus ochrogaster) by corticosterone. Proc Natl Acad Sci USA. 1995;92:7744–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arluison M, Brochier G, Vankova M, Leviel V, Villalobos J, Tramu G. Demonstration of peptidergic afferents to the bed nucleus of the stria terminalis using local injections of colchicine. A combined immunohistochemical and retrograde tracing study. Brain Res Bull. 1994;34:319–37.

    Article  CAS  PubMed  Google Scholar 

  55. Cortes R, Ceccatelli S, Schalling M, Hokfelt T. Differential effects of intracerebroventricular colchicine administration on the expression of mRNAs for neuropeptides and neurotransmitter enzymes, with special emphasis on galanin: an in situ hybridization study. Synapse 1990;6:369–91.

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Curtis JT, Wang Z. Vasopressin in the lateral septum regulates pair bond formation in male prairie voles (Microtus ochrogaster). Behav Neurosci. 2001;115:910–19.

    Article  CAS  PubMed  Google Scholar 

  57. Ventura-Silva AP, Pêgo JM, Sousa JC, Marques AR, Rodrigues AJ, Marques F, et al. Stress shifts the response of the bed nucleus of the stria terminalis to an anxiogenic mode. Eur J Neurosci. 2012;36:3396–406.

    Article  PubMed  Google Scholar 

  58. Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8:3840.

    Article  PubMed  PubMed Central  Google Scholar 

  59. DeVries AC, DeVries MB, Taymans SE, Carter CS. The effects of stress on social preferences are sexually dimorphic in prairie voles. Proc Natl Acad Sci USA. 1996;93:11980–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Curtis JT, Wang Z. Forebrain c-fos expression under conditions conducive to pair bonding in female prairie voles (Microtus ochrogaster). Physiol Behav. 2003;80:95–101.

    Article  CAS  PubMed  Google Scholar 

  61. Baumgartner HM, Granillo M, Schulkin J, Berridge KC. Corticotropin releasing factor (CRF) systems: Promoting cocaine pursuit without distress via incentive motivation. PLoS ONE. 2022;17:e0267345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baumgartner HM, Schulkin J, Berridge KC. Activating corticotropin-releasing factor systems in the nucleus accumbens, amygdala, and bed nucleus of stria terminalis: Incentive motivation or aversive motivation? Biol Psychiatry. 2021;89:1162–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dong HW, Petrovich GD, Watts AG, Swanson LW. Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J Comp Neurol. 2001;436:430–55.

    Article  CAS  PubMed  Google Scholar 

  64. Dabrowska J, Hazra R, Guo JD, Dewitt S, Rainnie DG. Central CRF neurons are not created equal: Phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Front Neurosci. 2013;7:156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Partridge JG, Forcelli PA, Luo R, Cashdan JM, Schulkin J, Valentino RJ, et al. Stress increases GABAergic neurotransmission in CRF neurons of the central amygdala and bed nucleus stria terminalis. Neuropharmacology 2016;107:239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Daniel SE, Rainnie DG. Stress modulation of opposing circuits in the bed nucleus of the stria terminalis. Neuropsychopharmacology 2016;41:103–25.

    Article  PubMed  Google Scholar 

  67. Itoga CA, Chen Y, Fateri C, Echeverry PA, Lai JM, Delgado J, et al. New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions. J Comp Neurol. 2019;527:2474–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dabrowska J, Martinon D, Moaddab M, Rainnie DG. Targeting corticotropin-releasing factor projections from the oval nucleus of the bed nucleus of the stria terminalis using cell-type specific neuronal tracing studies in mouse and rat brain. J Neuroendocrinol. 2016;28:10.1111/jne.12442.

  69. Avery SN, Clauss JA, Winder DG, Woodward N, Heckers S, Blackford JU. BNST neurocircuitry in humans. Neuroimage 2014;91:311–23.

    Article  PubMed  Google Scholar 

  70. Lim MM, Liu Y, Ryabinin AE, Bai Y, Wang Z, Young LJ. CRF receptors in the nucleus accumbens modulate partner preference in prairie voles. Horm Behav. 2007;51:508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lemos JC, Wanat MJ, Smith JS, Reyes BA, Hollon NG, Van Bockstaele EJ, et al. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature 2012;490:402–06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aragona BJ, Liu Y, Yu YJ, Curtis JT, Detwiler JM, Insel TR, et al. Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat Neurosci. 2006;9:133–39.

    Article  CAS  PubMed  Google Scholar 

  73. del Abril A, Segovia S, Guillamon A. The bed nucleus of the stria terminalis in the rat: regional sex differences controlled by gonadal steroids early after birth. Brain Res. 1987;429:295–300.

    Article  PubMed  Google Scholar 

  74. Urien L, Bauer EP. Sex differences in BNST and amygdala activation by contextual, cued, and unpredictable threats. eNeuro. 2022;9:ENEURO.0233-21.2021.

  75. Uchida K, Otsuka H, Morishita M, Tsukahara S, Sato T, Sakimura K, et al. Female-biased sexual dimorphism of corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis. Biol Sex Differences. 2019;10:6.

    Article  Google Scholar 

  76. Duque-Wilckens N, Steinman MQ, Busnelli M, Chini B, Yokoyama S, Pham M, et al. Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female California mice. Biol Psychiatry. 2018;83:203–13.

    Article  CAS  PubMed  Google Scholar 

  77. Martinon D, Dabrowska J. Corticotropin-releasing factor receptors modulate oxytocin release in the dorsolateral bed nucleus of the stria terminalis (BNST) in male rats. Front Neurosci. 2018;12:183.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Winter J, Jurek B. The interplay between oxytocin and the CRF system: Regulation of the stress response. Cell Tissue Res. 2019;375:85–91.

    Article  CAS  PubMed  Google Scholar 

  79. Wang L, Hou W, He Z, Yuan W, Yang J, Yang Y, et al. Effects of chronic social defeat on social behaviors in adult female mandarin voles (Microtus mandarinus): Involvement of the oxytocin system in the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:278–88.

    Article  CAS  PubMed  Google Scholar 

  80. Ross HE, Freeman SM, Spiegel LL, Ren X, Terwilliger EF, Young LJ. Variation in oxytocin receptor density in the nucleus accumbens has differential effects on affiliative behaviors in monogamous and polygamous voles. J Neurosci. 2009;29:1312–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ross HE, Cole CD, Smith Y, Neumann ID, Landgraf R, Murphy AZ, et al. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 2009;162:892–903.

    Article  CAS  PubMed  Google Scholar 

  82. Figel B, Brinkmann L, Buff C, Heitmann CY, Hofmann D, Bruchmann M, et al. Phasic amygdala and BNST activation during the anticipation of temporally unpredictable social observation in social anxiety disorder patients. Neuroimage Clin. 2019;22:101735.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Gossman for his assistance with validating specificity of viral expression with immunofluorescence, and the KU Animal Care Unit staff for their care of the prairie vole colonies.

Funding

Research reported in this publication was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Number R01NS113104 to AS and Program Colombia Científica “Health challenge #3” in compliance with the scholarship Fulbright Pasaporte a la Ciencia to LNM. We thank Fulbright Colombia and ICETEX for the scholarship provided. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional funding was provided by K-INBRE and the National Institute of General Medical Sciences under Award Number P20GM103418.

Author information

Authors and Affiliations

Authors

Contributions

MT contributed to conceptualization, formal analysis, investigation, methodology, validation, visualization, writing of the original draft, and review and editing of the manuscript. JG, EV, and LN contributed to formal analysis, investigation, validation, and review and editing of the manuscript. AS contributed to conceptualization, formal analysis, funding acquisition, methodology, project administration, resources, supervision, validation, and review and editing of the manuscript.

Corresponding author

Correspondence to Adam S. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tickerhoof, M.C., Nerio Morales, L.K., Goff, J. et al. Extended amygdala corticotropin-releasing hormone neurons regulate sexually dimorphic changes in pair bond formation following social defeat in prairie voles (Microtus ochrogaster). Neuropsychopharmacol. 50, 965–975 (2025). https://doi.org/10.1038/s41386-025-02067-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-025-02067-6

Search

Quick links