Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A projection from the medial prefrontal cortex to the lateral septum modulates coping behavior on the shock-probe test

Abstract

Effective coping plays an important role in preventing stress-induced neuropsychiatric conditions. The ventromedial prefrontal cortex (vmPFC) has been associated with active, adaptive coping in humans and rodents. Chronic or severe stress has been shown to induce a maladaptive shift from active to passive coping behavior; however, the neural circuits for effective coping strategies remain unclear. In the current study, we demonstrated that neurons in the infralimbic (IL) subregion of rat vmPFC that project to the lateral septum (LS) were recruited by exposure to the shock probe in the shock-probe defensive burying (SPDB) test. Both chemogenetic inhibition of LS-projecting neurons in the IL and optogenetic inhibition of glutamatergic IL terminals in the LS selectively suppressed active burying responses in the SPDB test in non-stressed rats. In contrast, chemogenetic activation of the IL-LS pathway effectively reversed the shift from active coping to passive immobility in the SPDB test induced by chronic unpredictable stress (CUS). These results indicate that top-down regulation of the LS by a projection from the IL cortex is necessary for an active, adaptive behavioral coping response, and is sufficient to restore active coping that has been compromised by chronic stress. More broadly, these results point to the IL-to-LS circuit as a potential substrate underlying maladaptive shifts from active to passive coping behavior that are often associated with stress-related neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neurons projecting from infralimbic cortex to lateral septum were activated during the shock-probe defensive burying test.
Fig. 2: Fos expression IL neurons projecting to LS was correlated with both the active burying response and immobility.
Fig. 3: Chemogenetic inhibition of the IL-LS pathway reduced active burying behavior in the SPDB test.
Fig. 4: Optogenetic inhibition of the IL-LS pathway reduced active burying behavior in the SPDB test.
Fig. 5: Effects of chemogenetic activation of the IL-LS pathway on coping behavior of non-stressed and chronically stressed rats.

Similar content being viewed by others

Data availability

Primary data generated, analyzed and included in the results reported in the current study are available from the corresponding author upon reasonable written request.

References

  1. Kessler RC. The effects of stressful life events on depression. Annu Rev Psychol. 1997;48:191–214.

    Article  CAS  PubMed  Google Scholar 

  2. Maeng LY, Milad MR Post-Traumatic Stress Disorder: The Relationship Between the Fear Response and Chronic Stress. Chronic Stress (Thousand Oaks). 2017:eCollection

  3. Kessler RC, Davis CG, Kendler KS. Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychol Med. 1997;27:1101–19.

    Article  CAS  PubMed  Google Scholar 

  4. LeDoux JE, Gorman JM. A call to action: overcoming anxiety through active coping. Am J Psychiatry. 2001;158:1953–5.

    Article  CAS  PubMed  Google Scholar 

  5. Olff M, Langeland W, Gersons BP. Effects of appraisal and coping on the neuroendocrine response to extreme stress. Neurosci Biobehav Rev. 2005;29:457–67.

    Article  CAS  PubMed  Google Scholar 

  6. Charney DS. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry. 2004;161:195–216.

    Article  PubMed  Google Scholar 

  7. Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, et al. Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev. 1999;23:925–35.

    Article  CAS  PubMed  Google Scholar 

  8. Gutner CA, Rizvi SL, Monson CM, Resick PA. Changes in coping strategies, relationship to the perpetrator, and posttraumatic distress in female crime victims. J Trauma Stress. 2006;19:813–23.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry. 2018;85:161–79.

    Article  PubMed  Google Scholar 

  10. Maier SF, Watkins LR. Role of the medial prefrontal cortex in coping and resilience. Brain Res. 2010;1355:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sinha R, Lacadie CM, Constable RT, Seo D. Dynamic neural activity during stress signals resilient coping. Proc Natl Acad Sci USA. 2016;113:8837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bondi CO, Barrera G, Lapiz MD, Bedard T, Mahan A, Morilak DA. Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:482–95.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson SB, Lingg RT, Skog TD, Hinz DC, Romig-Martin SA, Viau V, et al. Activity in a prefrontal-periaqueductal gray circuit overcomes behavioral and endocrine features of the passive coping stress response. Proc Natl Acad Sci USA. 2022;119:e2210783119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korte SM, Bouws GA, Koolhaas JM, Bohus B. Neuroendocrine and behavioral responses during conditioned active and passive behavior in the defensive burying/probe avoidance paradigm: effects of ipsapirone. Physiol Behav. 1992;52:355–61.

    Article  CAS  PubMed  Google Scholar 

  15. De Boer SF, Slangen JL, Van der Gugten J. Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: effects of chlordiazepoxide. Physiol Behav. 1990;47:1089–98.

    Article  PubMed  Google Scholar 

  16. Jett JD, Boley AM, Girotti M, Shah A, Lodge DJ, Morilak DA. Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway. Psychopharmacology. 2015;232:3123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fucich EA, Paredes D, Saunders MO, Morilak DA. Activity in the ventral medial prefrontal cortex is necessary for the therapeutic effects of extinction in rats. J Neurosci. 2018;38:1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fucich EA, Paredes D, Morilak DA. Therapeutic effects of extinction learning as a model of exposure therapy in rats. Neuropsychopharmacology. 2016;41:3092–102.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hatherall L, Sanchez C, Morilak DA. Chronic vortioxetine treatment reduces exaggerated expression of conditioned fear memory and restores active coping behavior in chronically stressed rats. Int J Neuropsychopharmacol. 2017;20:316–23.

    CAS  PubMed  Google Scholar 

  20. Fucich EA, Morilak DA. Shock-probe defensive burying test to measure active versus passive coping style in response to an aversive stimulus in rats. Bio Protoc. 2018;8:e2998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah AA, Sjovold T, Treit D. Inactivation of the medial prefrontal cortex with the GABAA receptor agonist muscimol increases open-arm activity in the elevated plus-maze and attenuates shock-probe burying in rats. Brain Res. 2004;1028:112–5.

    Article  CAS  PubMed  Google Scholar 

  22. Shah AA, Treit D. Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Res. 2003;969:183–94.

    Article  CAS  PubMed  Google Scholar 

  23. Sheehan TP, Chambers RA, Russell DS. Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Brain Res Rev. 2004;46:71–117.

    Article  PubMed  Google Scholar 

  24. Wirtshafter HS, Wilson MA. Lateral septum as a nexus for mood, motivation, and movement. Neurosci Biobehav Rev. 2021;126:544–59.

    Article  PubMed  Google Scholar 

  25. Patel H. The role of the lateral septum in neuropsychiatric disease. J Neurosci Res. 2022;100:1422–37.

    Article  CAS  PubMed  Google Scholar 

  26. Mongeau R, Miller GA, Chiang E, Anderson DJ. Neural correlates of competing fear behaviors evoked by an innately aversive stimulus. J Neurosci. 2003;23:3855–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang D, Pan X, Zhou Y, Wu Z, Ren K, Liu H, et al. Lateral septum-lateral hypothalamus circuit dysfunction in comorbid pain and anxiety. Mol Psychiatry. 2023;28:1090–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pesold C, Treit D. Excitotoxic lesions of the septum produce anxiolytic effects in the elevated plus-maze and the shock-probe burying tests. Physiol Behav. 1992;52:37–47.

    Article  CAS  PubMed  Google Scholar 

  29. Degroot A, Kashluba S, Treit D. Septal GABAergic and hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests. Pharm Biochem Behav. 2001;69:391–9.

    Article  CAS  Google Scholar 

  30. Buchanan SL, Thompson RH, Maxwell BL, Powell DA. Efferent connections of the medial prefrontal cortex in the rabbit. Exp Brain Res. 1994;100:469–83.

    Article  CAS  PubMed  Google Scholar 

  31. Chiba T, Kayahara T, Nakano K. Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res. 2001;888:83–101.

    Article  CAS  PubMed  Google Scholar 

  32. Vertes RP. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse. 2004;51:32–58.

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Tabisola K, Knippenberg AR, Ferreira LF, Morilak DA. The role of the projection from medial prefrontal cortex to lateral septum in coping behaviors. Neurosci Meet Planner Soc Neurosci 2023, online program no. 036.05.

  34. Treit D, Pesold C. Septal lesions inhibit fear reactions in two animal models of anxiolytic drug action. Physiol Behav. 1990;47:365–71.

    Article  CAS  PubMed  Google Scholar 

  35. Bondi CO, Jett JD, Morilak DA. Beneficial effects of desipramine on cognitive function of chronically stressed rats are mediated by alpha1-adrenergic receptors in medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:913–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bulin SE, Hohl KM, Paredes D, Silva JD, Morilak DA. Bidirectional optogenetically-induced plasticity of evoked responses in the rat medial prefrontal cortex can impair or enhance cognitive set-shifting. eNeuro. 2020;7:ENEURO.0363–19.2019.

    Article  PubMed  Google Scholar 

  37. Paredes D, Knippenberg AR, Morilak DA. Infralimbic BDNF signaling is necessary for the beneficial effects of extinction on set shifting in stressed rats. Neuropsychopharmacology. 2021;47:507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 6th Edition. Academic Press: San Diego; 2007.

  39. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience. 1995;64:477–505.

    Article  CAS  PubMed  Google Scholar 

  40. Gradinaru V, Thompson KR, Deisseroth K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 2008;36:129–39.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hohne N, Poidinger M, Merz F, Pfister H, Bruckl T, Zimmermann P, et al. Increased HPA axis response to psychosocial stress in remitted depression: the influence of coping style. Biol Psychol. 2014;103:267–75.

    Article  PubMed  Google Scholar 

  42. Tiet QQ, Rosen C, Cavella S, Moos RH, Finney JW, Yesavage J. Coping, symptoms, and functioning outcomes of patients with posttraumatic stress disorder. J Trauma Stress. 2006;19:799–811.

    Article  PubMed  Google Scholar 

  43. Hassija CM, Luterek JA, Naragon-Gainey K, Moore SA, Simpson T. Impact of emotional approach coping and hope on PTSD and depression symptoms in a trauma exposed sample of Veterans receiving outpatient VA mental health care services. Anxiety Stress Coping. 2012;25:559–73.

    Article  PubMed  Google Scholar 

  44. Pinel JPT D. Burying as a defensive response in rats. J Comp Physiol Psychol 92: 708-712. J Comp Psychol. 1978;92:708–12.

    Article  Google Scholar 

  45. De Boer SF, Koolhaas JM. Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharm. 2003;463:145–61.

    Article  Google Scholar 

  46. Treit D, Pesold C, Rotzinger S. Dissociating the anti-fear effects of septal and amygdaloid lesions using two pharmacologically validated models of rat anxiety. Behav Neurosci. 1993;107:770–85.

    Article  CAS  PubMed  Google Scholar 

  47. de Leon Reyes NS, Sierra Diaz P, Nogueira R, Ruiz-Pino A, Nomura Y, de Solis CA, et al. Corticotropin-releasing hormone signaling from prefrontal cortex to lateral septum suppresses interaction with familiar mice. Cell. 2023;186:4152–71.e31.

    Article  PubMed  Google Scholar 

  48. Carus-Cadavieco M, Gorbati M, Ye L, Bender F, van der Veldt S, Kosse C, et al. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature. 2017;542:232–36.

    Article  CAS  PubMed  Google Scholar 

  49. Chen YH, Wu JL, Hu NY, Zhuang JP, Li WP, Zhang SR, et al. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest. 2021;131:e145692.

  50. Kirby LG, Lucki I. The effect of repeated exposure to forced swimming on extracellular levels of 5-hydroxytryptamine in the rat. Stress. 1998;2:251–63.

    Article  CAS  PubMed  Google Scholar 

  51. Thomas E, Pernar L, Lucki I, Valentino RJ. Corticotropin-releasing factor in the dorsal raphe nucleus regulates activity of lateral septal neurons. Brain Res. 2003;960:201–8.

    Article  CAS  PubMed  Google Scholar 

  52. Radley JJ, Arias CM, Sawchenko PE. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci. 2006;26:12967–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. VanRyzin JW, Marquardt AE, McCarthy MM. Developmental origins of sex differences in the neural circuitry of play. Int J Play. 2020;9:58–75.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brady JV, Nauta WJ. Subcortical mechanisms in emotional behavior: affective changes following septal forebrain lesions in the albino rat. J Comp Physiol Psychol. 1953;46:339–46.

    Article  CAS  PubMed  Google Scholar 

  55. Albert DJ, Richmond SE. Hyperreactivity and aggressiveness following infusion of local anesthetic into the lateral septum or surrounding structures. Behav Biol. 1976;18:211–26.

    Article  CAS  PubMed  Google Scholar 

  56. Rizzi-Wise CA, Wang DV. Putting together pieces of the lateral septum: multifaceted functions and its neural pathways. eNeuro. 2021;8:ENEURO.0315–21.2021.

    Article  PubMed  Google Scholar 

  57. Johnson SB, Emmons EB, Lingg RT, Anderson RM, Romig-Martin SA, LaLumiere RT, et al. Prefrontal-bed nucleus circuit modulation of a passive coping response set. J Neurosci. 2019;39:1405–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology. 2011;36:529–38.

    Article  PubMed  Google Scholar 

  59. Rafnsson FD, Jonsson FH, Windle M. Coping strategies, stressful life events, problem behaviors, and depressed affect. Anxiety, Stress Coping. 2006;19:241–57.

    Article  Google Scholar 

  60. Johnsen BH, Eid J, Laberg JC, Thayer JF. The effect of sensitization and coping style on post-traumatic stress symptoms and quality of life: two longitudinal studies. Scand J Psychol. 2002;43:181–88.

    Article  PubMed  Google Scholar 

  61. Olff M, Langeland W, Gersons BP. The psychobiology of PTSD: coping with trauma. Psychoneuroendocrinology. 2005;30:974–82.

    Article  PubMed  Google Scholar 

  62. Korem N, Ben-Zion Z, Spiller TR, Duek OA, Harpaz-Rotem I, Pietrzak RH. Correlates of avoidance coping in trauma-exposed U.S. military veterans: Results from the National Health and Resilience in Veterans Study. J Affect Disord. 2023;339:89–97.

    Article  PubMed  Google Scholar 

  63. Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress. 2017;6:78–93.

    Article  PubMed  Google Scholar 

  64. Khan AR, Geiger L, Wiborg O, Czeh B. Stress-induced morphological, cellular and molecular changes in the brain-lessons learned from the chronic mild stress model of depression. Cells. 2020;9:1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Serran GA, Firestone P, Marshall WL, Moulden H. Changes in coping following treatment for child molesters. J Interpers Violence. 2007;22:1199–210.

    Article  PubMed  Google Scholar 

  66. Ihara S, Katayama N, Nogami W, Amano M, Noda S, Kurata C, et al. Comparison of changes in stress coping strategies between cognitive behavioral therapy and pharmacotherapy. Front Psychiatry. 2024;15:1343637.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Boden MT, Bonn-Miller MO, Vujanovic AA, Drescher KD. A Prospective Investigation of Changes in Avoidant and Active Coping and Posttraumatic Stress Disorder Symptoms among Military Veteran. J Psychopathol Behav Assess. 2012;34:433–39.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Anna R. Knippenberg and Livia Ferreira for technical assistance. Confocal images were generated in the Core Optical Imaging Facility which is supported by UT Health San Antonio and NIH-NCI grant P30 CA54174.

Funding

This work was supported by research grant R01MH053851 from the National Institute of Mental Health, National Institutes of Health; by Merit Award I01BX003512 from the U.S. Department of Veterans Affairs Biomedical Laboratory Research and Development Program; and by a grant from the William and Ella Owens Medical Research Foundation, none of which had any role in study design, data collection, analysis or interpretation, nor in the preparation or decision to submit this paper for publication. The contents of this paper do not represent the views of the Department of Veterans Affairs or the U.S. Government.

Author information

Authors and Affiliations

Authors

Contributions

JL contributed to experimental design and conception, data collection, analysis and interpretation of the results, and wrote and edited the manuscript. KT contributed to data collection and edited the manuscript. DAM was responsible for funding and resources necessary to conduct the research, contributed to experimental design and conception, data interpretation, editing and final approval of the manuscript.

Corresponding author

Correspondence to David A. Morilak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Tabisola, K.M. & Morilak, D.A. A projection from the medial prefrontal cortex to the lateral septum modulates coping behavior on the shock-probe test. Neuropsychopharmacol. 50, 1245–1255 (2025). https://doi.org/10.1038/s41386-025-02074-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-025-02074-7

This article is cited by

Search

Quick links