Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The hippocampus as a central hub in ketamine’s antidepressant action: from molecules to circuit rewiring

Abstract

Ketamine has emerged as a rapid-acting antidepressant that challenges classical monoaminergic frameworks and highlights the importance of synaptic and circuit-level plasticity in mood regulation. This review examines the hippocampus as a key site through which ketamine exerts both rapid and sustained antidepressant effects. We synthesize evidence showing that ketamine enhances hippocampal synaptic plasticity via mechanisms including NMDAR blockade of spontaneous neurotransmission, BDNF–TrkB signaling, MeCP2-dependent transcriptional priming, and adult neurogenesis. Molecular modulators such as Reelin, which influence NMDAR signaling and synaptic function, may also shape the efficacy of ketamine in a subset of individuals. Importantly, these hippocampal effects occur in coordination with broader network interactions, particularly with the medial prefrontal cortex and lateral habenula, allowing for circuit-level integration of antidepressant responses. Notably, ketamine’s therapeutic actions are dissociable from normalization of hypothalamic–pituitary–adrenal (HPA) axis function, underscoring a shift away from neuroendocrine-based models. By integrating molecular, synaptic, and systems-level findings, this review provides a hippocampus-centered framework for understanding ketamine’s antidepressant mechanisms and outlines novel strategies for circuit-informed, fast-acting antidepressant development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The hippocampus as a central hub for mood regulation.
Fig. 2: Comparison of Hebbian and homeostatic synaptic plasticity.

Similar content being viewed by others

References

  1. Association AP. Diagnostic and statistical manual of mental disorders. 5th ed. ed. American Psychiatric Publishing: Arlington, VA; 2013.

  2. Zhou J, Zhang Y, He S, Xu S, Sun Q, Zhao T, et al. Accelerated global burden of depressive disorders during the COVID-19 pandemic from 2019 to 2021. Sci Rep. 2025;15:9529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Quitkin FM, Rabkin JD, Markowitz JM, Stewart JW, McGrath PJ, Harrison W. Use of pattern analysis to identify true drug response. A replication. Arch Gen Psychiatry. 1987;44:259–64.

    Article  PubMed  CAS  Google Scholar 

  4. Quitkin FM, Rabkin JG, Ross D, Stewart JW. Identification of true drug response to antidepressants. Use of pattern analysis. Arch Gen Psychiatry. 1984;41:782–6.

    Article  PubMed  CAS  Google Scholar 

  5. Gaynes BN, Warden D, Trivedi MH, Wisniewski SR, Fava M, Rush AJ. What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr Serv. 2009;60:1439–45.

    Article  PubMed  Google Scholar 

  6. Kelly K, Posternak M, Alpert JE. Toward achieving optimal response: understanding and managing antidepressant side effects. Dial Clin Neurosci. 2008;10:409–18.

    Article  Google Scholar 

  7. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  PubMed  CAS  Google Scholar 

  8. Zarate CA Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  PubMed  CAS  Google Scholar 

  9. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry. 2013;74:250–6.

    Article  PubMed  CAS  Google Scholar 

  10. aan het Rot M, Collins KA, Murrough JW, Perez AM, Reich DL, Charney DS, et al. Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biol Psychiatry. 2010;67:139–45.

    Article  PubMed  CAS  Google Scholar 

  11. Rasmussen KG, Lineberry TW, Galardy CW, Kung S, Lapid MI, Palmer BA, et al. Serial infusions of low-dose ketamine for major depression. J Psychopharmacol. 2013;27:444–50.

    Article  PubMed  CAS  Google Scholar 

  12. McIntyre RS, Rosenblat JD, Nemeroff CB, Sanacora G, Murrough JW, Berk M, et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry. 2021;178:383–99.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Short B, Fong J, Galvez V, Shelker W, Loo CK. Side-effects associated with ketamine use in depression: a systematic review. Lancet Psychiatry. 2018;5:65–78.

    Article  PubMed  Google Scholar 

  14. Guo H, Wang B, Yuan S, Wu S, Liu J, He M, et al. Neurological adverse events associated with esketamine: a disproportionality analysis for signal detection leveraging the FDA adverse event reporting system. Front Pharm. 2022;13:849758.

    Article  CAS  Google Scholar 

  15. Baudot J, Soeiro T, Tambon M, Navarro N, Veyrac G, Mezaache S, et al. Safety concerns on the abuse potential of esketamine: Multidimensional analysis of a new anti-depressive drug on the market. Fundam Clin Pharm. 2022;36:572–81.

    Article  CAS  Google Scholar 

  16. Vakili K, Pillay SS, Lafer B, Fava M, Renshaw PF, Bonello-Cintron CM, et al. Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study. Biol Psychiatry. 2000;47:1087–90.

    Article  PubMed  CAS  Google Scholar 

  17. Arnone D, McIntosh AM, Ebmeier KP, Munafo MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol. 2012;22:1–16.

    Article  PubMed  CAS  Google Scholar 

  18. Hu J, Liu J, Liu Y, Wu X, Zhuang K, Chen Q, et al. Dysfunction of the anterior and intermediate hippocampal functional network in major depressive disorders across the adult lifespan. Biol Psychol. 2021;165:108192.

    Article  PubMed  Google Scholar 

  19. Hamilton KM, Luo XD, Easley TO, Ahmad F, Guo T, Jarukasemkit S, et al. The neuroimaging correlates of depression established across six large-scale datasets. bioRxiv. 2025: https://doi.org/10.1101/2025.07.02.660888.

  20. Roddy DW, Farrell C, Doolin K, Roman E, Tozzi L, Frodl T, et al. The hippocampus in depression: more than the sum of its parts? advanced hippocampal substructure segmentation in depression. Biol Psychiatry. 2019;85:487–97.

    Article  PubMed  Google Scholar 

  21. Yan CG, Chen X, Li L, Castellanos FX, Bai TJ, Bo QJ, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc Natl Acad Sci USA. 2019;116:9078–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci. 2017;18:335–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Holderbach R, Clark K, Moreau JL, Bischofberger J, Normann C. Enhanced long-term synaptic depression in an animal model of depression. Biol Psychiatry. 2007;62:92–100.

    Article  PubMed  Google Scholar 

  24. Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci Biobehav Rev. 2019;105:1–23.

    Article  PubMed  CAS  Google Scholar 

  25. Arcego DM, Buschdorf JP, O’Toole N, Wang Z, Barth B, Pokhvisneva I, et al. A glucocorticoid-sensitive hippocampal gene network moderates the impact of early-life adversity on mental health outcomes. Biol Psychiatry. 2024;95:48–61.

    Article  PubMed  CAS  Google Scholar 

  26. Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review. Learn Mem. 2015;22:411–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vythilingam M, Vermetten E, Anderson GM, Luckenbaugh D, Anderson ER, Snow J, et al. Hippocampal volume, memory, and cortisol status in major depressive disorder: effects of treatment. Biol Psychiatry. 2004;56:101–12.

    Article  PubMed  CAS  Google Scholar 

  28. Frodl T, Jager M, Smajstrlova I, Born C, Bottlender R, Palladino T, et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci. 2008;33:423–30.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Soumier A, Carter RM, Schoenfeld TJ, Cameron HA. New hippocampal neurons mature rapidly in response to ketamine but are not required for its acute antidepressant effects on neophagia in rats. eNeuro. 2016;eneuro 3:ENEURO.0116-0115.2016.

  30. Ma Z, Zang T, Birnbaum SG, Wang Z, Johnson JE, Zhang CL, et al. TrkB dependent adult hippocampal progenitor differentiation mediates sustained ketamine antidepressant response. Nat Commun. 2017;8:1668.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim JW, Autry AE, Na ES, Adachi M, Bjorkholm C, Kavalali ET, et al. Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat Neurosci. 2021;24:1100–09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lin PY, Ma ZZ, Mahgoub M, Kavalali ET, Monteggia LM. A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep. 2021;36:109513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Rawat R, Tunc-Ozcan E, Dunlop S, Tsai YH, Li F, Bertossi R, et al. Ketamine’s rapid and sustained antidepressant effects are driven by distinct mechanisms. Cell Mol Life Sci. 2024;81:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chen M, Ma S, Liu H, Dong Y, Tang J, Ni Z, et al. Brain region-specific action of ketamine as a rapid antidepressant. Science. 2024;385:eado7010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Carreno FR, Donegan JJ, Boley AM, Shah A, DeGuzman M, Frazer A, et al. Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine. Mol Psychiatry. 2016;21:1298–308.

    Article  PubMed  CAS  Google Scholar 

  37. Yoon SH, Song WS, Chung G, Kim SJ, Kim MH. Activity in the dorsal hippocampus-mPFC circuit modulates stress-coping strategies during inescapable stress. Exp Mol Med. 2024;56:1921–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Maller JJ, Broadhouse K, Rush AJ, Gordon E, Koslow S, Grieve SM. Increased hippocampal tail volume predicts depression status and remission to anti-depressant medications in major depression. Mol Psychiatry. 2018;23:1737–44.

    Article  PubMed  CAS  Google Scholar 

  39. MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry. 2008;64:880–3.

    Article  PubMed  Google Scholar 

  40. Brown ES, Rush AJ, McEwen BS. Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology. 1999;21:474–84.

    Article  PubMed  CAS  Google Scholar 

  41. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35:192–216.

    Article  PubMed  Google Scholar 

  42. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA. 1996;93:3908–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sheline YI, Sanghavi M, Mintun MA, Gado MH. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci. 1999;19:5034–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Brown ES, Hughes CW, McColl R, Peshock R, King KS, Rush AJ. Association of depressive symptoms with hippocampal volume in 1936 adults. Neuropsychopharmacology. 2014;39:770–9.

    Article  PubMed  Google Scholar 

  45. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA. 2003;100:1387–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sun F, Shuai Y, Wang J, Yan J, Lin B, Li X, et al. Hippocampal gray matter volume alterations in patients with first-episode and recurrent major depressive disorder and their associations with gene profiles. BMC Psychiatry. 2025;25:134.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:eaat8078.

  48. Cerqueira JJ, Pego JM, Taipa R, Bessa JM, Almeida OF, Sousa N. Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci. 2005;25:7792–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Roozendaal B, Griffith QK, Buranday J, De Quervain DJ, McGaugh JL. The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: dependence on the basolateral amygdala. Proc Natl Acad Sci USA. 2003;100:1328–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Liston C, Gan WB. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc Natl Acad Sci USA. 2011;108:16074–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience. 1995;69:89–98.

    Article  PubMed  CAS  Google Scholar 

  52. Christian KM, Miracle AD, Wellman CL, Nakazawa K. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience. 2011;174:26–36.

    Article  PubMed  CAS  Google Scholar 

  53. Skorzewska A, Bidzinski A, Hamed A, Lehner M, Turzynska D, Sobolewska A, et al. Changes in hippocampal amino acid concentrations after chronic administration of corticosterone. Pharm Rep. 2007;59:763–72.

    CAS  Google Scholar 

  54. Polman JA, Hunter RG, Speksnijder N, van den Oever JM, Korobko OB, McEwen BS, et al. Glucocorticoids modulate the mTOR pathway in the hippocampus: differential effects depending on stress history. Endocrinology. 2012;153:4317–27.

    Article  PubMed  CAS  Google Scholar 

  55. Ota KT, Liu RJ, Voleti B, Maldonado-Aviles JG, Duric V, Iwata M, et al. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat Med. 2014;20:531–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Piroli GG, Grillo CA, Reznikov LR, Adams S, McEwen BS, Charron MJ, et al. Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology. 2007;85:71–80.

    Article  PubMed  CAS  Google Scholar 

  57. Pan SM, Zhou YF, Zuo N, Jiao RQ, Kong LD, Pan Y. Fluoxetine increases astrocytic glucose uptake and glycolysis in corticosterone-induced depression through restricting GR-TXNIP-GLUT1 Pathway. Front Pharm. 2022;13:872375.

    Article  CAS  Google Scholar 

  58. Kahl KG, Georgi K, Bleich S, Muschler M, Hillemacher T, Hilfiker-Kleinert D, et al. Altered DNA methylation of glucose transporter 1 and glucose transporter 4 in patients with major depressive disorder. J Psychiatr Res. 2016;76:66–73.

    Article  PubMed  Google Scholar 

  59. Nair A, Vadodaria KC, Banerjee SB, Benekareddy M, Dias BG, Duman RS, et al. Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neuropsychopharmacology. 2007;32:1504–19.

    Article  PubMed  CAS  Google Scholar 

  60. Gourley SL, Kiraly DD, Howell JL, Olausson P, Taylor JR. Acute hippocampal brain-derived neurotrophic factor restores motivational and forced swim performance after corticosterone. Biol Psychiatry. 2008;64:884–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lu B. BDNF and activity-dependent synaptic modulation. Learn Mem. 2003;10:86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zagrebelsky M, Tacke C, Korte M. BDNF signaling during the lifetime of dendritic spines. Cell Tissue Res. 2020;382:185–99.

    Article  PubMed  PubMed Central  Google Scholar 

  63. An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, et al. Distinct role of long 3’ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell. 2008;134:175–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS. Hippocampal volume reduction in major depression. Am J Psychiatry. 2000;157:115–8.

    Article  PubMed  CAS  Google Scholar 

  65. Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and Loss of Adult Neurogenesis Differentially Reduce Hippocampal Volume. Biol Psychiatry. 2017;82:914–23.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Agasse F, Mendez-David I, Christaller W, Carpentier R, Braz BY, David DJ, et al. Chronic corticosterone elevation suppresses adult hippocampal neurogenesis by hyperphosphorylating Huntingtin. Cell Rep. 2020;32:107865.

    Article  PubMed  CAS  Google Scholar 

  67. Bauduin S, van der Wee NJA, van der Werff SJA. Structural brain abnormalities in Cushing’s syndrome. Curr Opin Endocrinol Diab Obes. 2018;25:285–89.

    Article  Google Scholar 

  68. Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol Psychiatry. 1999;46:1595–602.

    Article  PubMed  CAS  Google Scholar 

  69. Sapolsky RM, Krey LC, McEwen BS. Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci. 1985;5:1222–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Armanini MP, Hutchins C, Stein BA, Sapolsky RM. Glucocorticoid endangerment of hippocampal neurons is NMDA-receptor dependent. Brain Res. 1990;532:7–12.

    Article  PubMed  CAS  Google Scholar 

  71. Landfield PW, Waymire JC, Lynch G. Hippocampal aging and adrenocorticoids: quantitative correlations. Science. 1978;202:1098–102.

    Article  PubMed  CAS  Google Scholar 

  72. Sapolsky RM, Krey LC, McEwen BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986;7:284–301.

    Article  PubMed  CAS  Google Scholar 

  73. De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, et al. Frequency of hippocampal formation atrophy in normal aging and Alzheimer’s disease. Neurobiol Aging. 1997;18:1–11.

    Article  PubMed  Google Scholar 

  74. Lucassen PJ, Muller MB, Holsboer F, Bauer J, Holtrop A, Wouda J, et al. Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol. 2001;158:453–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sapolsky RM. A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. J Neurosci. 1985;5:1228–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kim JW, Suzuki K, Kavalali ET, Monteggia LM. Ketamine: Mechanisms and Relevance to Treatment of Depression. Annu Rev Med. 2024;75:129–43.

    Article  PubMed  CAS  Google Scholar 

  77. Spierling SR, Zorrilla EP. Don’t stress about CRF: assessing the translational failures of CRF(1)antagonists. Psychopharmacol (Berl). 2017;234:1467–81.

    Article  CAS  Google Scholar 

  78. DeBattista C, Belanoff J, Glass S, Khan A, Horne RL, Blasey C, et al. Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol Psychiatry. 2006;60:1343–9.

    Article  PubMed  CAS  Google Scholar 

  79. Finkelmeyer A, Nilsson J, He J, Stevens L, Maller JJ, Moss RA, et al. Altered hippocampal function in major depression despite intact structure and resting perfusion. Psychol Med. 2016;46:2157–68.

    Article  PubMed  CAS  Google Scholar 

  80. Zavaliangos-Petropulu A, McClintock SM, Joshi SH, Taraku B, Al-Sharif NB, Espinoza RT, et al. Hippocampal subfield volumes in treatment resistant depression and serial ketamine treatment. Front Psychiatry. 2023;14:1227879.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Evans JW, Graves MC, Nugent AC, Zarate CA Jr. Hippocampal volume changes after (R,S)-ketamine administration in patients with major depressive disorder and healthy volunteers. Sci Rep. 2024;14:4538.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures?. Neuron. 2010;65:7–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Al Abed AS, Ducourneau EG, Bouarab C, Sellami A, Marighetto A, Desmedt A. Preventing and treating PTSD-like memory by trauma contextualization. Nat Commun. 2020;11:4220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Besnard A, Miller SM, Sahay A. Distinct dorsal and ventral hippocampal CA3 outputs govern contextual fear discrimination. Cell Rep. 2020;30:2360–73 e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Jiang YF, Liu J, Yang J, Guo Y, Hu W, Zhang J, et al. Involvement of the dorsal hippocampus 5-HT receptors in the regulation of depressive-like behaviors in hemiparkinsonian rats. Neuropsychobiology. 2020;79:198–207.

    Article  PubMed  CAS  Google Scholar 

  86. Chen M, Wang C, Lin Y, Chen Y, Xie W, Huang X, et al. Dorsal raphe nucleus-hippocampus serotonergic circuit underlies the depressive and cognitive impairments in 5xFAD male mice. Transl Neurodegener. 2024;13:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB. Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci USA. 2002;99:10825–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559:98–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Volitaki E, Forro T, Li K, Nevian T, Ciocchi S. Activity of ventral hippocampal parvalbumin interneurons during anxiety. Cell Rep. 2024;43:114295.

    Article  PubMed  CAS  Google Scholar 

  90. Bagot RC, Parise EM, Pena CJ, Zhang HX, Maze I, Chaudhury D, et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun. 2015;6:7062.

    Article  PubMed  CAS  Google Scholar 

  91. Adhikari A, Topiwala MA, Gordon JA. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron. 2010;65:257–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ciocchi S, Passecker J, Malagon-Vina H, Mikus N, Klausberger T. Selective information routing by ventral hippocampal CA1 projection neurons. Science. 2015;348:560–63.

    Article  PubMed  CAS  Google Scholar 

  93. Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A, et al. Persistent beta2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. Am J Psychiatry. 2012;169:851–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dulawa SC, Janowsky DS. Cholinergic regulation of mood: from basic and clinical studies to emerging therapeutics. Mol Psychiatry. 2019;24:694–709.

    Article  PubMed  CAS  Google Scholar 

  95. Risch SC, Cohen RM, Janowsky DS, Kalin NH, Sitaram N, Gillin JC, et al. Physostigmine induction of depressive symptomatology in normal human subjects. Psychiatry Res. 1981;4:89–94.

    Article  PubMed  CAS  Google Scholar 

  96. Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci USA. 2013;110:3573–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kim JW, Kleinfelter B, Kavalali ET, Monteggia LM. Distinct synaptic mechanisms drive the behavioral response to acute stress and rapid correction by ketamine. Neuropsychopharmacology. 2024;49:1916–24.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET. Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci. 2013;33:6990–7002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Suzuki K, Kim JW, Nosyreva E, Kavalali ET, Monteggia LM. Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action. Cell Rep. 2021;37:109918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell. 2006;125:785–99.

    Article  PubMed  CAS  Google Scholar 

  101. Sutton MA, Wall NR, Aakalu GN, Schuman EM. Regulation of dendritic protein synthesis by miniature synaptic events. Science. 2004;304:1979–83.

    Article  PubMed  CAS  Google Scholar 

  102. Atasoy D, Ertunc M, Moulder KL, Blackwell J, Chung C, Su J, et al. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J Neurosci. 2008;28:10151–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Crawford DC, Ramirez DM, Trauterman B, Monteggia LM, Kavalali ET. Selective molecular impairment of spontaneous neurotransmission modulates synaptic efficacy. Nat Commun. 2017;8:14436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lisman J, Yasuda R, Raghavachari S. Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci. 2012;13:169–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Nicoll RA. A brief history of long-term potentiation. Neuron. 2017;93:281–90.

    Article  PubMed  CAS  Google Scholar 

  106. Piazza MK, Kavalali ET, Monteggia LM. Ketamine induced synaptic plasticity operates independently of long-term potentiation. Neuropsychopharmacology. 2024;49:1758–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ma ZZ, Guzikowski NJ, Kim JW, Kavalali ET, Monteggia LM. Enhanced ERK activity extends ketamine’s antidepressant effects by augmenting synaptic plasticity. Science. 2025;388:646–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Laje G, Lally N, Mathews D, Brutsche N, Chemerinski A, Akula N, et al. Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry. 2012;72:e27–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry. 2012;71:996–1005.

    Article  PubMed  CAS  Google Scholar 

  110. Adaikkan C, Taha E, Barrera I, David O, Rosenblum K. Calcium/calmodulin-dependent protein kinase II and eukaryotic elongation factor 2 kinase pathways mediate the antidepressant action of ketamine. Biol Psychiatry. 2018;84:65–75.

    Article  PubMed  CAS  Google Scholar 

  111. Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron. 2006;52:255–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kim JW, Monteggia LM. Increasing doses of ketamine curtail antidepressant responses and suppress associated synaptic signaling pathways. Behav Brain Res. 2020;380:112378.

    Article  PubMed  CAS  Google Scholar 

  113. Ainsworth NJ, Sepehry AA, Vila-Rodriguez F. Effects of ketamine anesthesia on efficacy, tolerability, seizure response, and neurocognitive outcomes in electroconvulsive therapy: a comprehensive meta-analysis of double-blind randomized controlled trials. J ECT. 2020;36:94–105.

    Article  PubMed  Google Scholar 

  114. Herz J, Chen Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci. 2006;7:850–9.

    Article  PubMed  CAS  Google Scholar 

  115. Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron. 2005;47:567–79.

    Article  PubMed  CAS  Google Scholar 

  116. Bock HH, Herz J. Reelin activates SRC family tyrosine kinases in neurons. Curr Biol. 2003;13:18–26.

    Article  PubMed  CAS  Google Scholar 

  117. Chen Y, Beffert U, Ertunc M, Tang TS, Kavalali ET, Bezprozvanny I, et al. Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci. 2005;25:8209–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. MacDonald JF, Miljkovic Z, Pennefather P. Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. J Neurophysiol. 1987;58:251–66.

    Article  PubMed  CAS  Google Scholar 

  119. Kim JW, Herz J, Kavalali ET, Monteggia LM A key requirement for synaptic Reelin signaling in ketamine-mediated behavioral and synaptic action. Proc Natl Acad Sci USA. 2021;118:e2103079118.

  120. DeWilde KE, Levitch CF, Murrough JW, Mathew SJ, Iosifescu DV. The promise of ketamine for treatment-resistant depression: current evidence and future directions. Ann N Y Acad Sci. 2015;1345:47–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Jin K, Zhang S, Jiang C, Liu R, Chen B, Zhao H, et al. The role of reelin in the pathological mechanism of depression from clinical to rodents. Psychiatry Res. 2022;317:114838.

    Article  PubMed  CAS  Google Scholar 

  122. Park D, Lee G, Lee WG, Kim B, Lee Y, Kim JW. The therapeutic potential of psilocybin beyond psychedelia through shared mechanisms with ketamine. Mol Psychiatry. 2025;30:4910–27.

  123. Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM. Effects of a ketamine metabolite on synaptic NMDAR function. Nature. 2017;546:E1–E3.

    Article  PubMed  CAS  Google Scholar 

  124. Riggs LM, Aracava Y, Zanos P, Fischell J, Albuquerque EX, Pereira EFR, et al. 2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism. Neuropsychopharmacology. 2020;45:426–36.

    Article  PubMed  CAS  Google Scholar 

  125. Bonaventura J, Gomez JL, Carlton ML, Lam S, Sanchez-Soto M, Morris PJ, et al. Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Mol Psychiatry. 2022;27:4144–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Riggs LM, Pereira EFR, Thompson SM, Gould TD. cAMP-dependent protein kinase signaling is required for (2R,6R)-hydroxynorketamine to potentiate hippocampal glutamatergic transmission. J Neurophysiol. 2024;131:64–74.

    Article  PubMed  CAS  Google Scholar 

  127. Brown KA, Ajibola MI, Gould TD. Rapid hippocampal synaptic potentiation induced by ketamine metabolite (2R,6R)-hydroxynorketamine persistently primes synaptic plasticity. Neuropsychopharmacology. 2025;50:928–40.

    Article  PubMed  CAS  Google Scholar 

  128. Fukumoto K, Fogaca MV, Liu RJ, Duman C, Kato T, Li XY, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proc Natl Acad Sci USA. 2019;116:297–302.

    Article  PubMed  CAS  Google Scholar 

  129. Maeng S, Zarate CA Jr., Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–52.

    Article  PubMed  CAS  Google Scholar 

  130. Kryst J, Kawalec P, Mitoraj AM, Pilc A, Lason W, Brzostek T. Efficacy of single and repeated administration of ketamine in unipolar and bipolar depression: a meta-analysis of randomized clinical trials. Pharm Rep. 2020;72:543–62.

    Article  CAS  Google Scholar 

  131. Bagot RC, Cates HM, Purushothaman I, Vialou V, Heller EA, Yieh L, et al. Ketamine and imipramine reverse transcriptional signatures of susceptibility and induce resilience-specific gene expression profiles. Biol Psychiatry. 2017;81:285–95.

    Article  PubMed  CAS  Google Scholar 

  132. Lopez JP, Lucken MD, Brivio E, Karamihalev S, Kos A, De Donno C, et al. Ketamine exerts its sustained antidepressant effects via cell-type-specific regulation of Kcnq2. Neuron. 2022;110:2283–98 e9.

    Article  PubMed  CAS  Google Scholar 

  133. Perucca E, Taglialatela M. Targeting Kv7 potassium channels for epilepsy. CNS Drugs. 2025;39:263–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Phillips JL, Norris S, Talbot J, Birmingham M, Hatchard T, Ortiz A, et al. Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: a randomized controlled trial. Focus (Am Psychiatr Publ). 2020;18:236–43.

    PubMed  Google Scholar 

  135. Zheng W, Zhou YL, Liu WJ, Wang CY, Zhan YN, Li HQ, et al. Investigation of medical effect of multiple ketamine infusions on patients with major depressive disorder. J Psychopharmacol. 2019;33:494–501.

    Article  PubMed  Google Scholar 

  136. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.

    Article  PubMed  CAS  Google Scholar 

  137. Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature. 2015;522:89–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014;17:215–22.

    Article  PubMed  CAS  Google Scholar 

  139. Ebert DH, Gabel HW, Robinson ND, Kastan NR, Hu LS, Cohen S, et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature. 2013;499:341–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, et al. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron. 2011;72:72–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–60.

    Article  PubMed  CAS  Google Scholar 

  142. Rawat R, Tunc-Ozcan E, McGuire TL, Peng CY, Kessler JA. Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice. Nat Commun. 2022;13:2650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Nacher J, Alonso-Llosa G, Rosell DR, McEwen BS. NMDA receptor antagonist treatment increases the production of new neurons in the aged rat hippocampus. Neurobiol Aging. 2003;24:273–84.

    Article  PubMed  CAS  Google Scholar 

  144. Maekawa M, Namba T, Suzuki E, Yuasa S, Kohsaka S, Uchino S. NMDA receptor antagonist memantine promotes cell proliferation and production of mature granule neurons in the adult hippocampus. Neurosci Res. 2009;63:259–66.

    Article  PubMed  CAS  Google Scholar 

  145. Nacher J, McEwen BS. The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus. 2006;16:267–70.

    Article  PubMed  CAS  Google Scholar 

  146. Cameron HA, McEwen BS, Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci. 1995;15:4687–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Bonaguidi MA, Peng CY, McGuire T, Falciglia G, Gobeske KT, Czeisler C, et al. Noggin expands neural stem cells in the adult hippocampus. J Neurosci. 2008;28:9194–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Ardalan M, Wegener G, Rafati AH, Nyengaard JR. S-ketamine rapidly reverses synaptic and vascular deficits of hippocampus in genetic animal model of depression. Int J Neuropsychopharmacol. 2017;20:247–56.

    PubMed  CAS  Google Scholar 

  149. Overstreet DH, Friedman E, Mathe AA, Yadid G. The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev. 2005;29:739–59.

    Article  PubMed  CAS  Google Scholar 

  150. Zhang J, Qu Y, Chang L, Pu Y, Hashimoto K. R)-ketamine rapidly ameliorates the decreased spine density in the medial prefrontal cortex and hippocampus of susceptible mice after chronic social defeat stress. Int J Neuropsychopharmacol. 2019;22:675–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain. 2020;13:92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol. 2014;18:1–6.

  153. Zhang Y, Wei CK, Wang P, Zheng LC, Cheng Y, Ren ZH, et al. S-ketamine alleviates depression-like behavior and hippocampal neuroplasticity in the offspring of mice that experience prenatal stress. Sci Rep. 2024;14:26929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Clarke M, Razmjou S, Prowse N, Dwyer Z, Litteljohn D, Pentz R, et al. Ketamine modulates hippocampal neurogenesis and pro-inflammatory cytokines but not stressor induced neurochemical changes. Neuropharmacology. 2017;112:210–20.

    Article  PubMed  CAS  Google Scholar 

  155. Wegman-Points L, Pope B, Zobel-Mask A, Winter L, Wauson E, Duric V, et al. Corticosterone as a potential confounding factor in delineating mechanisms underlying ketamine’s rapid antidepressant actions. Front Pharm. 2020;11:590221.

    Article  CAS  Google Scholar 

  156. Khalili-Mahani N, Martini CH, Olofsen E, Dahan A, Niesters M. Effect of subanaesthetic ketamine on plasma and saliva cortisol secretion. Br J Anaesth. 2015;115:68–75.

    Article  PubMed  CAS  Google Scholar 

  157. Radford CKD, Park TY, Osborne-Smith L, Choi KH. Effects of subanesthetic intravenous ketamine infusion on corticosterone and brain-derived neurotrophic factor in the plasma of male Sprague-Dawley rats. AANA J. 2018;86:393–400.

    PubMed  Google Scholar 

  158. Georgiou P, Farmer CA, Medeiros GC, Yuan P, Johnston J, Kadriu B, et al. Associations between hypothalamic-pituitary-adrenal (HPA) axis hormone levels, major depression features and antidepressant effects of ketamine. J Affect Disord. 2025;373:126–32.

    Article  PubMed  CAS  Google Scholar 

  159. Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry. 2008;165:617–20.

    Article  PubMed  Google Scholar 

  160. Blasey CM, Block TS, Belanoff JK, Roe RL. Efficacy and safety of mifepristone for the treatment of psychotic depression. J Clin Psychopharmacol. 2011;31:436–40.

    Article  PubMed  CAS  Google Scholar 

  161. McAllister-Williams RH, Anderson IM, Finkelmeyer A, Gallagher P, Grunze HC, Haddad PM, et al. Antidepressant augmentation with metyrapone for treatment-resistant depression (the ADD study): a double-blind, randomised, placebo-controlled trial. Lancet Psychiatry. 2016;3:117–27.

    Article  PubMed  Google Scholar 

  162. Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Invest. 2020;130:1336–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69:754–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, et al. Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci USA. 2015;112:8106–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Cui Y, Hu S, Hu H. Lateral habenular burst firing as a target of the rapid antidepressant effects of ketamine. Trends Neurosci. 2019;42:179–91.

    Article  PubMed  CAS  Google Scholar 

  167. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–22.

    Article  PubMed  CAS  Google Scholar 

  168. Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323–27.

    Article  PubMed  CAS  Google Scholar 

  169. Olsen ML, Sontheimer H. Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem. 2008;107:589–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature. 2023;622:802–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the BK21 FOUR program of Graduate School, Kyung Hee University (KHU-20250488 to D.P.), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00212118 and RS-2025-02217139 to JK), Ministry of Food and Drug safety in 2025 (RS-2024-00397713 to JK), the Korea Dementia Research Project through the Korea Dementia Research Center(KDRC), funded by the Ministry of Health & Welfare and Ministry of Science and ICT, Republic of Korea (grant number : RS-2025-02253017), and Kyung Hee University in 2022 (KHU-20222245 to JK).

Author information

Authors and Affiliations

Authors

Contributions

DP, GL, BK, MS, and JK wrote the manuscript. DP and GL prepared the figures. JK drafted the outline.

Corresponding author

Correspondence to Ji-Woon Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D., Lee, G., Kim, B. et al. The hippocampus as a central hub in ketamine’s antidepressant action: from molecules to circuit rewiring. Neuropsychopharmacol. 51, 537–547 (2026). https://doi.org/10.1038/s41386-025-02288-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-025-02288-9

Search

Quick links