Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tocopherols inhibit esophageal carcinogenesis through attenuating NF-κB activation and CXCR3-mediated inflammation

Abstract

Esophageal cancer is one of the common causes of cancer mortality in the world. The predominant histological subtype, esophageal squamous cell carcinoma (ESCC), often results in poor prognosis due to the lack of effective approaches for the early diagnosis and treatment, highlighting the need for preventive intervention against this disease. Here we report that dietary tocopherols significantly prevents esophageal carcinogenesis by inhibiting the activation of NF-κB and the subsequent interaction of chemokine CXCL9/10/11 with their receptor CXCR3 in ESCC induced by N-nitrosomethylbenzylamine (NMBA) in murine models. Dietary supplementation with 0.15% α-tocopherol (α-T), δ-tocopherol (δ-T), or γ-tocopherol rich mixture (γ-TmT) markedly suppressed the production of pro-inflammatory cytokines, as well as the induction of CXCR3+ effector T cells (CD4+ Th1 and CD8+ CTLs) infiltration, especially at the early stage of carcinogenesis. In experiments in vivo and in vitro, these events were tightly correlated with the blockade of NF-κB activation. Our results show that tocopherols decrease carcinogenesis through inhibiting NF-κB and CXCR3 signaling, as well as related inflammation in early premalignant lesions. This pathway may offer a novel target for chemoprevention of esophageal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64:381–7.

    Article  PubMed  Google Scholar 

  2. IARC. Oesophageal cancer estimated incidence, mortality and prevalence worldwide in 2012. GLOBOCAN, Section of Cancer Information 2012.

  3. Maresso KC, Tsai KY, Brown PH, Szabo E, Lippman S, Hawk ET. Molecular cancer prevention: current status and future directions. CA Cancer J Clin. 2015;65:345–83.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qiao YL, Dawsey SM, Kamangar F, Fan JH, Abnet CC, Sun XD, et al. Total and cancer mortality after supplementation with vitamins and minerals: follow-up of the Linxian General Population Nutrition Intervention Trial. J Natl Cancer Inst. 2009;101:507–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S, Wang GQ, et al. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J Natl Cancer Inst. 1993;85:1483–92.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor PR, Li B, Dawsey SM, Li JY, Yang CS, Guo W, et al. Prevention of esophageal cancer: the nutrition intervention trials in Linxian, China. Linxian Nutrition Intervention Trials Study Group. Cancer Res. 1994;54:2029s–2031s.

    PubMed  CAS  Google Scholar 

  7. Taylor PR, Qiao YL, Abnet CC, Dawsey SM, Yang CS, Gunter EW, et al. Prospective study of serum vitamin E levels and esophageal and gastric cancers. J Natl Cancer Inst. 2003;95:1414–6.

    Article  PubMed  Google Scholar 

  8. Mark SD, Qiao YL, Dawsey SM, Wu YP, Katki H, Gunter EW, et al. Prospective study of serum selenium levels and incident esophageal and gastric cancers. J Natl Cancer Inst. 2000;92:1753–63.

    Article  PubMed  CAS  Google Scholar 

  9. Yang H, Jia X, Chen X, Yang CS, Li N. Time-selective chemoprevention of vitamin E and selenium on esophageal carcinogenesis in rats: the possible role of nuclear factor kappaB signaling pathway. Int J Cancer. 2012;131:1517–27.

    Article  PubMed  CAS  Google Scholar 

  10. Yang H, Fang J, Jia X, Han C, Chen X, Yang CS, et al. Chemopreventive effects of early-stage and late-stage supplementation of vitamin E and selenium on esophageal carcinogenesis in rats maintained on a low vitamin E/selenium diet. Carcinogenesis. 2011;32:381–8.

    Article  PubMed  CAS  Google Scholar 

  11. Gaziano JM, Glynn RJ, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians’ Health Study II randomized controlled trial. Jama. 2009;301:52–62.

    Article  PubMed  CAS  Google Scholar 

  12. Klein EA, Thompson IM Jr., Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2011;306:1549–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301:39–51.

    Article  PubMed  CAS  Google Scholar 

  14. Lee IM, Cook NR, Gaziano JM, Gordon D, Ridker PM, Manson JE, et al. Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. JAMA. 2005;294:56–65.

    Article  PubMed  CAS  Google Scholar 

  15. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med. 2014;6:221ra215.

    Article  CAS  Google Scholar 

  16. Yang CS, Suh N, Kong AN. Does vitamin E prevent or promote cancer? Cancer Prev Res (Phila). 2012;5:701–5.

    Article  CAS  Google Scholar 

  17. Yang CS, Chen JX, Wang H, Lim J. Lessons learned from cancer prevention studies with nutrients and non-nutritive dietary constituents. Mol Nutr Food Res. 2016;60:1239–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Traber MG, Kayden HJ. Preferential incorporation of alpha-tocopherol vs gamma-tocopherol in human lipoproteins. Am J Clin Nutr. 1989;49:517–26.

    Article  PubMed  CAS  Google Scholar 

  19. Eitenmiller T, Lee J. Vitamin E: food chemistry, composition, and analysis. New York: Marcel Dekker, Inc.; 2004.

    Book  Google Scholar 

  20. Dietrich M, Traber MG, Jacques PF, Cross CE, Hu Y, Block G. Does gamma-tocopherol play a role in the primary prevention of heart disease and cancer? A review. J Am Coll Nutr. 2006;25:292–9.

    Article  PubMed  CAS  Google Scholar 

  21. Wang H, Hong J, Yang CS. Delta-tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells. Mol Carcinog. 2016;55:1728–38.

    Article  PubMed  CAS  Google Scholar 

  22. Das Gupta S, Sae-tan S, Wahler J, So JY, Bak MJ, Cheng LC, et al. Dietary gamma-tocopherol-rich mixture inhibits estrogen-induced mammary tumorigenesis by modulating estrogen metabolism, antioxidant response, and PPARgamma. Cancer Prev Res (Phila). 2015;8:807–16.

    Article  CAS  Google Scholar 

  23. Smolarek AK, So JY, Burgess B, Kong AN, Reuhl K, Lin Y, et al. Dietary administration of delta- and gamma-tocopherol inhibits tumorigenesis in the animal model of estrogen receptor-positive, but not HER-2 breast cancer. Cancer Prev Res (Phila). 2012;5:1310–20.

    Article  CAS  Google Scholar 

  24. Guan F, Li G, Liu AB, Lee MJ, Yang Z, Chen YK, et al. Delta- and gamma-tocopherols, but not alpha-tocopherol, inhibit colon carcinogenesis in azoxymethane-treated F344 rats. Cancer Prev Res (Phila). 2012;5:644–54.

    Article  CAS  Google Scholar 

  25. Chen JX, Liu A, Lee MJ, Wang H, Yu S, Chi E, et al. Delta- and gamma-tocopherols inhibit phIP/DSS-induced colon carcinogenesis by protection against early cellular and DNA damages. Mol Carcinog. 2017;56:172–83.

    Article  PubMed  CAS  Google Scholar 

  26. Stoner GD, Chen T, Kresty LA, Aziz RM, Reinemann T, Nines R. Protection against esophageal cancer in rodents with lyophilized berries: potential mechanisms. Nutr Cancer. 2006;54:33–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Clark-Lewis I, Mattioli I, Gong JH, Loetscher P. Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem. 2003;278:289–95.

    Article  PubMed  CAS  Google Scholar 

  28. Billottet C, Quemener C, Bikfalvi A. CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta. 2013;1836:287–95.

    PubMed  CAS  Google Scholar 

  29. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med. 1998;187:875–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wingender E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinforma. 2008;9:326–32.

    Article  CAS  Google Scholar 

  31. Chen FE, Huang DB, Chen YQ, Ghosh G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature. 1998;391:410–3.

    Article  PubMed  CAS  Google Scholar 

  32. Perez S, Talens-Visconti R, Rius-Perez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med. 2017;104:75–103.

    Article  PubMed  CAS  Google Scholar 

  33. Bak MJ, Das Gupta S, Wahler J, Lee HJ, Li X, Lee MJ, et al. Inhibitory effects of gamma- and delta-tocopherols on estrogen-stimulated breast cancer in vitro and in vivo. Cancer Prev Res (Phila). 2017;10:188–97.

    Article  CAS  Google Scholar 

  34. Li GX, Lee MJ, Liu AB, Yang Z, Lin Y, Shih WJ, et al. Delta-tocopherol is more active than alpha—or gamma -tocopherol in inhibiting lung tumorigenesis in vivo. Cancer Prev Res (Phila). 2011;4:404–13.

    Article  CAS  Google Scholar 

  35. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005;121:977–90.

    Article  PubMed  CAS  Google Scholar 

  37. Verbeke H, Geboes K, Van Damme J, Struyf S. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta. 2012;1825:117–29.

    PubMed  CAS  Google Scholar 

  38. Zhou H, Wu J, Wang T, Zhang X, Liu D. CXCL10/CXCR3 axis promotes the invasion of gastric cancer via PI3K/AKT pathway-dependent MMPs production. Biomed Pharmacother. 2016;82:479–88.

    Article  PubMed  CAS  Google Scholar 

  39. Lunardi S, Lim SY, Muschel RJ, Brunner TB. IP-10/CXCL10 attracts regulatory T cells: implication for pancreatic cancer. Oncoimmunology. 2015;4:e1027473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mulligan AM, Raitman I, Feeley L, Pinnaduwage D, Nguyen LT, O’Malley FP, et al. Tumoral lymphocytic infiltration and expression of the chemokine CXCL10 in breast cancers from the Ontario Familial Breast Cancer Registry. Clin Cancer Res. 2013;19:336–46.

    Article  PubMed  CAS  Google Scholar 

  41. Lee JH, Kim HN, Kim KO, Jin WJ, Lee S, Kim HH, et al. CXCL10 promotes osteolytic bone metastasis by enhancing cancer outgrowth and osteoclastogenesis. Cancer Res. 2012;72:3175–86.

    Article  PubMed  CAS  Google Scholar 

  42. Zipin-Roitman A, Meshel T, Sagi-Assif O, Shalmon B, Avivi C, Pfeffer RM, et al. CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res. 2007;67:3396–405.

    Article  PubMed  CAS  Google Scholar 

  43. Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res. 2011;317:620–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of TH1 CD4 + T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260:547–9.

    Article  PubMed  CAS  Google Scholar 

  45. Malyak M, Guthridge JM, Hance KR, Dower SK, Freed JH, Arend WP. Characterization of a low molecular weight isoform of IL-1 receptor antagonist. J Immunol. 1998;161:1997–2003.

    PubMed  CAS  Google Scholar 

  46. Malyak M, Smith MF Jr., Abel AA, Hance KR, Arend WP. The differential production of three forms of IL-1 receptor antagonist by human neutrophils and monocytes. J Immunol. 1998;161:2004–10.

    PubMed  CAS  Google Scholar 

  47. Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20:1126–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Chen JX, Li G, Wang H, Liu A, Lee MJ, Reuhl K, et al. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice. Cancer Lett. 2016;371:71–78.

    Article  PubMed  CAS  Google Scholar 

  50. Reeves PG, Nielsen FH, Fahey GC Jr.. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123:1939–51.

    Article  PubMed  CAS  Google Scholar 

  51. Fong LY, Magee PN. Dietary zinc deficiency enhances esophageal cell proliferation and N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence in C57BL/6 mouse. Cancer Lett. 1999;143:63–69.

    Article  PubMed  CAS  Google Scholar 

  52. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol. 2006;24:1140–50.

    Article  PubMed  CAS  Google Scholar 

  53. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (no. 81402679).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Yang or Xudong Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Xu, M., Lu, F. et al. Tocopherols inhibit esophageal carcinogenesis through attenuating NF-κB activation and CXCR3-mediated inflammation. Oncogene 37, 3909–3923 (2018). https://doi.org/10.1038/s41388-018-0246-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-018-0246-8

This article is cited by

Search

Quick links