Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Di-Ras2 promotes renal cell carcinoma formation by activating the mitogen-activated protein kinase pathway in the absence of von Hippel–Lindau protein

Abstract

Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal human urological malignancies in the world. One of the pathological drivers for ccRCC is the Ras family of small GTPases that function as “molecular switches” in many diseases including ccRCC. Among the GTPases in the Di-Ras family, DIRAS2 gene encodes a GTPase that shares 60% homology to Ras and Rap. Yet little is known about the biological function(s) of Di-Ras2 or how its activities are regulated. In this study, we focused on Di-Ras2, and determined its functions and underlying mechanism during formation of ccRCC. We found that Di-Ras2 was upregulated in ccRCC, and promoted the proliferation, migration and invasion of human ccRCC cells in the absence of von Hippel–Lindau protein (pVHL). Mechanistically, Di-Ras2 induces and regulates ccRCC formation by modulating phosphorylation of the downstream effectors and activating the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, Di-Ras2 interacts with E3 ubiquitin ligase, pVHL, which facilitates the ubiquitination and degradation of Di-Ras2. Together, these results indicate a potential function of Di-Ras2 as an oncogene in ccRCC, and these data provide a new perspective of the relationship between pVHL and the MAPK pathway in ccRCC tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Di-Ras2 expression is upregulated in ccRCC.
Fig. 2: Di-Ras2 promotes ccRCC cell proliferation, migration, and invasion in VHL-mutated cell lines.
Fig. 3: Di-Ras2 promotes VHL-mutated ccRCC tumor growth in vivo.
Fig. 4: Di-Ras2 activates the MAPK pathway in the absence of VHL.
Fig. 5: pVHL binds to Di-Ras2 and facilitates the ubiquitination and degradation of Di-Ras2.
Fig. 6: The tumor-promoting activity of Di-Ras2 is overridden by VHL.
Fig. 7: Di-Ras2 promotes VHL-mutated ccRCC tumor growth.

Similar content being viewed by others

References

  1. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Prim. 2017;3:17009.

    Article  PubMed  Google Scholar 

  2. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373:1119–32.

    Article  CAS  PubMed  Google Scholar 

  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  5. Creighton CJ, Morgan M, Gunaratne PH, Wheeler DA, Gibbs RA, Robertson A, et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.

    Article  CAS  Google Scholar 

  6. Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, Davis C, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl J Med. 2016;374:135–45.

    Article  PubMed  CAS  Google Scholar 

  7. Davis CF, Ricketts CJ, Wang M, Yang L, Cherniack AD, Shen H, et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell. 2014;26:319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs-Part A: renal, penile, and testicular tumours. Eur Urol. 2016;70:93–105.

    Article  PubMed  Google Scholar 

  9. Stadler WM. Targeted agents for the treatment of advanced renal cell carcinoma. Cancer. 2005;104:2323–33.

    Article  CAS  PubMed  Google Scholar 

  10. Alt AL, Boorjian SA, Lohse CM, Costello BA, Leibovich BC, Blute ML. Survival after complete surgical resection of multiple metastases from renal cell carcinoma. Cancer. 2011;117:2873–82.

    Article  PubMed  Google Scholar 

  11. Alonso-Gordoa T, García-Bermejo ML, Grande E, Garrido P, Carrato A, Molina-Cerrillo J. Targeting tyrosine kinases in renal cell carcinoma: “New Bullets against Old Guys”. Int J Mol Sci. 2019;20:1901.

    Article  CAS  PubMed Central  Google Scholar 

  12. Elbanna M, Orillion AR, Damayanti NP, Adelaiye-Ogala R, Shen L, Miles KM, et al. Dual inhibition of angiopoietin-TIE2 and MET alters the tumor microenvironment and prolongs survival in a metastatic model of renal cell carcinoma. Mol Cancer Ther. 2020;19:147–56.

    Article  CAS  PubMed  Google Scholar 

  13. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.

    Article  CAS  PubMed  Google Scholar 

  14. Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat. 2008;29:992–1006.

    Article  CAS  PubMed  Google Scholar 

  15. Tidyman WE, Rauen KA. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009;19:230–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Foster SA, Malek S. The RAS/MAPK axis gets stressed out. Mol Cell. 2016;64:854–5.

    Article  CAS  PubMed  Google Scholar 

  17. Ritt DA, Abreu-Blanco MT, Bindu L, Durrant DE, Zhou M, Specht SI, et al. Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit. Mol Cell. 2016;64:875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kontani K, Tada M, Ogawa T, Okai T, Saito K, Araki Y, et al. Di-Ras, a distinct subgroup of ras family GTPases with unique biochemical properties. J Biol Chem. 2002;277:41070–8.

    Article  CAS  PubMed  Google Scholar 

  19. Gasper R, Sot B, Wittinghofer A. GTPase activity of Di-Ras proteins is stimulated by Rap1GAP proteins. Small GTPases. 2010;1:133–41.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ogita Y, Egami S, Ebihara A, Ueda N, Katada T, Kontani K. Di-Ras2 protein forms a complex with SmgGDS protein in brain cytosol in order to be in a low affinity state for guanine nucleotides. J Biol Chem. 2015;290:20245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang X, Wu J, Ding CK, Lu M, Keenan MM, Lin CC, et al. Cystine deprivation triggers programmed necrosis in VHL-deficient renal cell carcinomas. Cancer Res. 2016;76:1892–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature. 2002;417:975–8.

    Article  CAS  PubMed  Google Scholar 

  23. Maniaci C, Hughes SJ, Testa A, Chen W, Lamont DJ, Rocha S, et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun. 2017;8:830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tu Y, Chen C, Pan J, Xu J, Zhou ZG, Wang CY. The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int. J Clin Pathol. 2012;5:726–38.

    CAS  Google Scholar 

  25. Brinkmann K, Schell M, Hoppe T, Kashkar H. Regulation of the DNA damage response by ubiquitin conjugation. Front Genet. 2015;6:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Robinson CM, Lefebvre F, Poon BP, Bousard A, Fan X, Lathrop M, et al. Consequences of VHL loss on global DNA methylome. Sci Rep. 2018;8:3313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chittiboina P, Lonser RR. Von Hippel-Lindau disease. Handb Clin Neurol. 2015;132:139–56.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li Q, Li D, Zhang X, Wan Q, Zhang W, Zheng M, et al. E3 Ligase VHL promotes Group 2 innate lymphoid cell maturation and function via glycolysis inhibition and induction of Interleukin-33 receptor. Immunity. 2018;48:258–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI, et al. Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol. 2008;10:1208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiao-Fen W, Ting C, Jie L, Deng-Yang M, Qing-Feng Z, Xin L. Correlation analysis of VHL and Jade-1 gene expression in human renal cell carcinoma. Open Med (Wars). 2016;1:226–30.

    Article  CAS  Google Scholar 

  31. Zeng L, Bai M, Mittal AK, El-Jouni W, Zhou J, Cohen DM, et al. Candidate tumor suppressor and pVHL partner Jade-1 binds and inhibits AKT in renal cell carcinoma. Cancer Res. 2013;73:5371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, et al. VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal carcinoma. Science. 2018;361:290–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dushukyan N, Dunn DM, Sager RA, Woodford MR, Loiselle DR, Daneshvar M, et al. Phosphorylation and ubiquitination regulate protein phosphatase 5 activity and its prosurvival role in kidney cancer. Cell Rep. 2017;21:1883–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hasanov E, Chen G, Chowdhury P, Weldon J, Ding Z, Jonasch E, et al. Ubiquitination and regulation of AURKA identifies a hypoxia-independent E3 ligase activity of VHL. Oncogene. 2017;36:3450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okuda H, Saitoh K, Hirai S, Iwai K, Takaki Y, Baba M, et al. The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J Biol Chem. 2001;276:43611–7.

    Article  CAS  PubMed  Google Scholar 

  36. Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML, Sanchez Y, et al. von Hippel-Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci USA. 2003;100:2706–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Mol Cancer. 2016;15:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yang L, Chen J, Huang X, Zhang E, He J, Cai Z. Novel insights into E3 ubiquitin ligase in cancer chemoresistance. Am J Med Sci. 2018;355:368–76.

    Article  PubMed  Google Scholar 

  39. Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  41. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150:1107–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29:2046–51.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morris MR, Latif F. The epigenetic landscape of renal cancer. Nat Rev Nephrol. 2017;13:47–60.

    Article  CAS  PubMed  Google Scholar 

  46. Banumathy G, Cairns P. Signaling pathways in renal cell carcinoma. Cancer Biol Ther. 2010;10:658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schermer B, Ghenoiu C, Bartram M, Müller RU, Kotsis F, Höhne M, et al. The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol. 2006;175:547–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 2007;67:585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from Ministry of Science and Technology of the People’s Republic of China (2017YFA0102900 to WQG), National Natural Science Foundation of China (81872406 and 81630073 to WQG, 81772938 to LL, and 81602443 to XL), State Key Laboratory of Oncogenes and Related Genes (KF01801 to LL), Science and Technology Commission of Shanghai Municipality (16JC1405700 to WQG, 18140902700 and 19140905500 to LL), KC Wong foundation (to WQG) and Hunan Provincial Natural Science Foundation of China (2019JJ50550 to XL). LL is supported by Innovation Research Plan from Shanghai Municipal Education Commission (ZXGF082101), and Shanghai Jiao Tong University Medical Engineering Cross Fund (YG2016MS52).

Author information

Authors and Affiliations

Contributions

HR mainly performed the experiments, analyzed the data and wrote the paper. XL collected the clinical samples. ML, JL, XL, and JX helped with the experiments. LL and WQG carried out the experiment design and paper drafting. All authors had edit and approved the final paper.

Corresponding authors

Correspondence to Li Li or Wei-Qiang Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, H., Li, X., Liu, M. et al. Di-Ras2 promotes renal cell carcinoma formation by activating the mitogen-activated protein kinase pathway in the absence of von Hippel–Lindau protein. Oncogene 39, 3853–3866 (2020). https://doi.org/10.1038/s41388-020-1247-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-020-1247-y

Search

Quick links