Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromatin-associated OGT promotes the malignant progression of hepatocellular carcinoma by activating ZNF263

Abstract

Reversible and dynamic O-GlcNAcylation regulates vast networks of highly coordinated cellular and nuclear processes. Although dysregulation of the sole enzyme O-GlcNAc transferase (OGT) was shown to be associated with the progression of hepatocellular carcinoma (HCC), the mechanisms by which OGT controls the cis-regulatory elements in the genome and performs transcriptional functions remain unclear. Here, we demonstrate that elevated OGT levels enhance HCC proliferation and metastasis, in vitro and in vivo, by orchestrating the transcription of numerous regulators of malignancy. Diverse transcriptional regulators are recruited by OGT in HCC cells undergoing malignant progression, which shapes genome-wide OGT chromatin cis-element occupation. Furthermore, an unrecognized cooperation between ZNF263 and OGT is crucial for activating downstream transcription in HCC cells. We reveal that O-GlcNAcylation of Ser662 is responsible for the chromatin association of ZNF263 at candidate gene promoters and the OGT-facilitated HCC malignant phenotypes. Our data establish the importance of aberrant OGT activity and ZNF263 O-GlcNAcylation in the malignant progression of HCC and support the investigation of OGT as a therapeutic target for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High levels of OGT in HCC are correlated with poor patient prognosis.
Fig. 2: OGT-modulated transcriptomics are responsible for the malignance of HCC in vitro and in vivo.
Fig. 3: Chromatin-associated OGT occupies promoter regions and actives malignant-related genes expression in HCC cells.
Fig. 4: The interactions with ZNF263 shape OGT genomic occupation in HCC cells.
Fig. 5: ZNF263 is O-GlcNAcylated by OGT in HCC cells.
Fig. 6: ZNF263 O-GlcNAcylation governs the expression of downstream metastasis-related genes through modulation of ZNF263 chromatin loci.
Fig. 7: ZNF263 O-GlcNAcylation enhances the metastatic potential of HCC cells.
Fig. 8: ZNF263 O-GlcNAcylation promotes metastasis of HCC cells in vivo.

Similar content being viewed by others

References

  1. Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19:151–72.

    Article  CAS  PubMed  Google Scholar 

  2. Craig AJ, Von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17:139–52.

    Article  PubMed  Google Scholar 

  3. Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol. 2016;65:798–808.

    Article  CAS  PubMed  Google Scholar 

  4. Katyal S, Oliver JH III, Peterson MS, Ferris JV, Carr BS, Baron RL. Extrahepatic metastases of hepatocellular carcinoma. Radiology 2000;216:698–703.

    Article  CAS  PubMed  Google Scholar 

  5. Slawson C, Hart GW. O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer. 2011;11:678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma JF, Hou CY, Wu C. Demystifying the O-GlcNAc Code: a systems view. Chem Rev (Rev). 2022;122:15822–64.

    Article  CAS  Google Scholar 

  7. Bond MR, Hanover JA. A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol. 2015;208:869–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma Z, Vosseller K. Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. J Biol Chem. 2014;289:34457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Parker MP, Peterson KR, Slawson C. O-GlcNAcylation and O-GlcNAc cycling regulate gene transcription: emerging roles in cancer. Cancers 2021;13:1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Y-Y, Liu H-Y, Yu T-J, Lu Q, Zhang F-L, Liu G-Y, et al. O-GlcNAcylation of MORC2 at threonine 556 by OGT couples TGF-β signaling to breast cancer progression. Cell Death Differ. 2022;29:861–73.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Cao Y, Pan X, Shi M, Wu Q, Huang T, et al. O-GlcNAc elevation through activation of the hexosamine biosynthetic pathway enhances cancer cell chemoresistance. Cell Death Dis. 2018;9:485.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu R, Gou D, Xiang J, Pan X, Gao Q, Zhou P, et al. O-GlcNAc modified-TIP60/KAT5 is required for PCK1 deficiency-induced HCC metastasis. Oncogene. 2021;40:6707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duan F, Wu H, Jia D, Wu W, Ren S, Wang L, et al. O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. J Hepatol. 2018;68:1191–202.

    Article  CAS  PubMed  Google Scholar 

  14. Fardini Y, Dehennaut V, Lefebvre T, Issad T. O-GlcNAcylation: a new cancer hallmark? Front Endocrinol. 2013;4:99.

    Article  Google Scholar 

  15. Huang H, Wu Q, Guo X, Huang T, Xie X, Wang L, et al. O‐GlcNAcylation promotes the migratory ability of hepatocellular carcinoma cells via regulating FOXA2 stability and transcriptional activity. J Cell Physiol. 2021;236:7491–503.

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Feng Y, Zhang C, Chen X, Huang H, Li W, et al. Upregulation of OGT by Caveolin‐1 promotes hepatocellular carcinoma cell migration and invasion. Cell Biol Int. 2021;45:2251–63.

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18:452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. King DT, Males A, Davies GJ, Vocadlo DJ. Molecular mechanisms regulating O-linked N-acetylglucosamine (O-GlcNAc)-processing enzymes. Curr Opin Chem Biol. 2019;53:131–44.

    Article  CAS  PubMed  Google Scholar 

  19. Xu W, Zhang X, Wu J-L, Fu L, Liu K, Liu D, et al. O-GlcNAc transferase promotes fatty liver-associated liver cancer through inducing palmitic acid and activating endoplasmic reticulum stress. J Hepatol. 2017;67:310–20.

    Article  CAS  PubMed  Google Scholar 

  20. Alteen MG, Tan HY, Vocadlo DJ. Monitoring and modulating O-GlcNAcylation: assays and inhibitors of O-GlcNAc processing enzymes. Curr Opin Struct Biol. 2021;68:157–65.

    Article  CAS  PubMed  Google Scholar 

  21. Hardivillé S, Hart GW. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 2014;20:208–13.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Issad T, Kuo M. O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab. 2008;19:380–9.

    Article  CAS  PubMed  Google Scholar 

  23. Özcan S, Andrali SS, Cantrell JE. Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta Gene Regul Mech. 2010;1799:353–64.

    Article  Google Scholar 

  24. Ma J, Hou C, Li Y, Chen S, Wu C. OGT protein interaction network (OGT-PIN): a curated database of experimentally identified interaction proteins of OGT. Int J Mol Sci. 2021;22:9620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu C-W, Xie J, Jiang J. The emerging roles of protein interactions with O-GlcNAc cycling enzymes in cancer. Cancers 2022;14:5135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weiss RJ, Spahn PN, Toledo AG, Chiang AW, Kellman BP, Li J, et al. ZNF263 is a transcriptional regulator of heparin and heparan sulfate biosynthesis. Proc Natl Acad Sci USA. 2020;117:9311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruan J, Zheng HY, Rong XD, Rong XM, Zhang JY, Fang WJ, et al. Over-expression of cathepsin B in hepatocellular carcinomas predicts poor prognosis of HCC patients. Mol Cancer. 2016;15:17.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J, Fan C, et al. A small molecule that inhibits OGT activity in cells. ACS Chem Biol. 2015;10:1392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol. 2008;4:483–90.

    Article  CAS  PubMed  Google Scholar 

  30. Gao M, Guo G, Huang J, Hou X, Ham H, Kim W, et al. DOCK7 protects against replication stress by promoting RPA stability on chromatin. Nucleic Acids Res. 2021;49:3322–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teran OY, Lin M-CJ, Zanotelli MR, Wilson KF, Cerione RA. Dock7 regulates the AKT/mTOR pathway to promote survival and sustain the transformative properties of cancer cells. Cancer Res. 2022;82:139–139.

    Article  Google Scholar 

  32. Zhou C, Qin Y, Xie Z, Zhang J, Yang M, Li S, et al. NPTX1 is a novel epigenetic regulation gene and associated with prognosis in lung cancer. Biochem Biophys Res Commun. 2015;458:381–6.

    Article  CAS  PubMed  Google Scholar 

  33. Yan H, Zheng C, Li Z, Bao B, Yang B, Hou K, et al. NPTX1 promotes metastasis via integrin/FAK signaling in gastric cancer. Cancer Manag Res. 2019;11:3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou J, Ma X, Xu L, Liang Q, Mao J, Liu J, et al. Genomic profiling of the UFMylation family genes identifies UFSP2 as a potential tumour suppressor in colon cancer. Clin Transl Med. 2021;11:e642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Y-T, Wang C-L, Van Aelst L. DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis. Nat Neurosci. 2012;15:1201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boles NC, Hirsch SE, Le S, Corneo B, Najm F, Minotti AP, et al. NPTX1 regulates neural lineage specification from human pluripotent stem cells. Cell Rep. 2014;6:724–36.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu Q, Zhou L, Yang Z, Lai M, Xie H, Wu L, et al. O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation. Med Oncol. 2012;29:985–93.

    Article  CAS  PubMed  Google Scholar 

  38. Chu Y, Jiang M, Wu N, Xu B, Li W, Liu H, et al. O-GlcNAcylation of SIX1 enhances its stability and promotes Hepatocellular Carcinoma Proliferation. Theranostics 2020;10:9830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burén S, Gomes AL, Teijeiro A, Fawal M-A, Yilmaz M, Tummala KS, et al. Regulation of OGT by URI in response to glucose confers c-MYC-dependent survival mechanisms. Cancer Cell. 2016;30:290–307.

    Article  PubMed  Google Scholar 

  40. Itkonen HM, Loda M, Mills IG. O-GlcNAc transferase–an auxiliary factor or a full-blown oncogene? O-GlcNAc transferase-oncogene or not? Mol Cancer Res. 2021;19:555–64.

    Article  CAS  PubMed  Google Scholar 

  41. Martinez M, Renuse S, Kreimer S, O’Meally R, Natov P, Madugundu AK, et al. Quantitative proteomics reveals that the OGT interactome is remodeled in response to oxidative stress. Mol Cell Proteom. 2021;20:100069.

    Article  CAS  Google Scholar 

  42. Gao J, Yang Y, Qiu R, Zhang K, Teng X, Liu R, et al. Proteomic analysis of the OGT interactome: novel links to epithelial-mesenchymal transition and metastasis of cervical cancer. Carcinogenesis. 2018;39:1222–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daou S, Mashtalir N, Hammond-Martel I, Pak H, Yu H, Sui G, et al. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc Natl Acad Sci USA. 2011;108:2747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levine ZG, Potter SC, Joiner CM, Fei GQ, Nabet B, Sonnett M, et al. Mammalian cell proliferation requires noncatalytic functions of O-GlcNAc transferase. Proc Natl Acad Sci USA. 2021;118:e2016778118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang X, Su K, Roos MD, Chang Q, Paterson AJ, Kudlow JE. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci USA. 2001;98:6611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hiromura M, Choi CH, Sabourin NA, Jones H, Bachvarov D, Usheva A. YY1 is regulated by O-linkedN-acetylglucosaminylation (O-GlcNAcylation). J Biol Chem. 2003;278:14046–52.

    Article  CAS  PubMed  Google Scholar 

  47. Park SY, Kim HS, Kim NH, Ji S, Cha SY, Kang JG, et al. Snail1 is stabilized by O‐GlcNAc modification in hyperglycaemic condition. EMBO J. 2010;29:3787–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frietze S, Lan X, Jin VX, Farnham PJ. Genomic targets of the KRAB and SCAN domain-containing zinc finger protein 263. J Biol Chem. 2010;285:1393–403.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Li X-M, Shi X-H, Ye K, Fu X-L, Wang X, et al. Sorafenib triggers ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular carcinoma. Acta Pharmacol Sin. 2022;44:622–34.

    Article  PubMed  Google Scholar 

  50. Yu Z, Feng J, Wang W, Deng Z, Zhang Y, Xiao L, et al. The EGFR-ZNF263 signaling axis silences SIX3 in glioblastoma epigenetically. Oncogene. 2020;39:3163–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chu C-S, Lo P-W, Yeh Y-H, Hsu P-H, Peng S-H, Teng Y-C, et al. O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci USA. 2014;111:1355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K, Cuomo A, et al. Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell. 2013;49:645–56.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Q, Liu X, Gao W, Li P, Hou J, Li J, et al. Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked β-N-acetylglucosamine transferase (OGT). J Biol Chem. 2014;289:5986–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang X, Dou P, Akhtar ML, Liu F, Hu X, Yang L, et al. NEU4 inhibits motility of HCC cells by cleaving sialic acids on CD44. Oncogene. 2021;40:5427–40.

    Article  CAS  PubMed  Google Scholar 

  55. Xie X, Wu Q, Zhang K, Liu Y, Zhang N, Chen Q, et al. O-GlcNAc modification regulates MTA1 transcriptional activity during breast cancer cell genotoxic adaptation. Biochim Biophys Acta (BBA)-Gen Subj. 2021;1865:129930.

    Article  CAS  Google Scholar 

  56. Peters MB, Yang Y, Wang B, Fusti-Molnar L, Weaver MN, Merz KM Jr. Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). J Chem Theory Comput. 2010;6:2935–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (32171282) and the Fundamental Research Funds for the Central Universities (DUT22YG131).

Author information

Authors and Affiliations

Authors

Contributions

YL and JZ conceived and designed the study. LW, GL, ZZ, and CG performed all cell culture experiments and generated samples for LC-MS/MS; QC and KZ performed LC-MS/MS; LW, YL, MN, and XZ provided assistance with animal resources and human samples; LW, YL and NZ acquired images using confocal microscopy; SW performed molecular dynamics simulation; YL and JZ analyzed data; LW, JZ, and YL drafted the manuscript, while all authors provided input into the manuscript.

Corresponding authors

Correspondence to Sijin Wu, Jianing Zhang or Yubo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, G., Zhou, Z. et al. Chromatin-associated OGT promotes the malignant progression of hepatocellular carcinoma by activating ZNF263. Oncogene 42, 2329–2346 (2023). https://doi.org/10.1038/s41388-023-02751-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-023-02751-1

This article is cited by

Search

Quick links