Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GLI1 confers resistance to PARP inhibitors by activating the DNA damage repair pathway

A Correction to this article was published on 13 September 2024

This article has been updated

Abstract

Identifying the mechanisms of action of anticancer drugs is an important step in the development of new drugs. In this study, we established a comprehensive screening platform consisting of 68 oncogenes (MANO panel), encompassing 243 genetic variants, to identify predictive markers for drug efficacy. Validation was performed using drugs that targeted EGFR, BRAF, and MAP2K1, which confirmed the utility of this functional screening panel. Screening of a BRCA2-knockout DLD1 cell line (DLD1-KO) revealed that cells expressing SMO and GLI1 were resistant to olaparib. Gene set enrichment analysis identified genes associated with DNA damage repair that were enriched in cells overexpressing SMO and GLI1. The expression of genes associated with homologous recombination repair (HR), such as the FANC family and BRCA1/2, was significantly upregulated by GLI1 expression, which is indicative of PARP inhibitor resistance. Although not all representative genes of the nucleotide excision repair (NER) pathway were upregulated, NER activity was enhanced by GLI1. The GLI1 inhibitor was effective against DLD1-KO cells overexpressing GLI1 both in vitro and in vivo. Furthermore, the combination therapy of olaparib and GLI1 inhibitor exhibited a synergistic effect on DLD1-KO, suggesting the possible clinical application of GLI1 inhibitor targeting cancer with defective DNA damage repair. This platform enables the identification of biomarkers associated with drug sensitivity, and is a useful tool for drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the transformation activity of 243 variants.
Fig. 2: Verification of the MANO panel.
Fig. 3: Identification of resistant variants to PARPi.
Fig. 4: Effect on DNA damage repair by the expression of SMO and GLI1 genes.
Fig. 5: Combination treatment of PARPi and GLI1 inhibitor in mouse xenograft model.

Similar content being viewed by others

Data availability

The data generated in this study are available within the article and its supplementary table files.

Change history

References

  1. Kohsaka S, Nagano M, Ueno T, Suehara Y, Hayashi T, Shimada N. et al. A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer. Sci Transl Med. 2017;9:eaan6566.

    Article  PubMed  Google Scholar 

  2. Ikeuchi H, Hirose T, Ikegami M, Takamochi K, Suzuki K, Mano H, et al. Preclinical assessment of combination therapy of EGFR tyrosine kinase inhibitors in a highly heterogeneous tumor model. Oncogene. 2022;41:2470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hayes TK, Aquilanti E, Persky NS, Yang X, Kim EE, Brenan L, et al. Comprehensive mutational scanning of EGFR reveals TKI sensitivities of extracellular domain mutants. Nat Commun. 2024;15:2742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Robichaux JP, Le X, Vijayan RSK, Hicks JK, Heeke S, Elamin YY, et al. Structure-based classification predicts drug response in EGFR-mutant NSCLC. Nature. 2021;597:732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    Article  PubMed  Google Scholar 

  6. Planchard D, Besse B, Groen HJM, Souquet PJ, Quoix E, Baik CS, et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol. 2016;17:984–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Subbiah V, Kreitman RJ, Wainberg ZA, Gazzah A, Lassen U, Stein A, et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial. Nat Med. 2023;29:1103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–7.

    Article  CAS  PubMed  Google Scholar 

  9. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  10. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petropoulos M, Karamichali A, Rossetti GG, Freudenmann A, Iacovino LG, Dionellis VS, et al. Transcription-replication conflicts underlie sensitivity to PARP inhibitors. Nature. 2024;628:433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer. 2020;19:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee E, Matulonis UA. PARP inhibitor resistance mechanisms and implications for post-progression combination therapies. Cancers (Basel). 2020;12:2054

    Article  CAS  PubMed  Google Scholar 

  14. Pettitt SJ, Frankum JR, Punta M, Lise S, Alexander J, Chen Y, et al. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 2020;10:1475–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin KK, Harrell MI, Oza AM, Oaknin A, Ray-Coquard I, Tinker AV, et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 2019;9:210–9.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Burness ML, Martin-Trevino R, Guy J, Bai S, Harouaka R, et al. RAD51 mediates resistance of cancer stem cells to PARP inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23:514–22.

    Article  CAS  PubMed  Google Scholar 

  17. Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M, Bouwman P, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015;521:541–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling AK, et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature. 2018;560:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gupta R, Somyajit K, Narita T, Maskey E, Stanlie A, Kremer M, et al. DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell. 2018;173:972–988 e923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 2013;3:68–81.

    Article  CAS  PubMed  Google Scholar 

  21. He YJ, Meghani K, Caron MC, Yang C, Ronato DA, Bian J, et al. DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature. 2018;563:522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagano M, Kohsaka S, Ueno T, Kojima S, Saka K, Iwase H, et al. High-throughput functional evaluation of variants of unknown significance in ERBB2. Clin Cancer Res. 2018;24:5112–22.

    Article  CAS  PubMed  Google Scholar 

  23. Kudo K, Gavin E, Das S, Amable L, Shevde LA, Reed E. Inhibition of Gli1 results in altered c-Jun activation, inhibition of cisplatin-induced upregulation of ERCC1, XPD and XRCC1, and inhibition of platinum-DNA adduct repair. Oncogene. 2012;31:4718–24.

    Article  CAS  PubMed  Google Scholar 

  24. Avery JT, Zhang R, Boohaker RJ. GLI1: a therapeutic target for cancer. Front Oncol. 2021;11:673154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Infante P, Mori M, Alfonsi R, Ghirga F, Aiello F, Toscano S, et al. Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors. EMBO J. 2015;34:200–17.

    Article  CAS  PubMed  Google Scholar 

  26. Hirose T, Ikegami M, Endo M, Matsumoto Y, Nakashima Y, Mano H, et al. Extensive functional evaluation of exon 20 insertion mutations of EGFR. Lung Cancer. 2021;152:135–42.

    Article  CAS  PubMed  Google Scholar 

  27. Mizuno S, Ikegami M, Koyama T, Sunami K, Ogata D, Kage H, et al. High-throughput functional evaluation of MAP2K1 variants in cancer. Mol Cancer Ther. 2023;22:227–39.

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura IT, Kohsaka S, Ikegami M, Ikeuchi H, Ueno T, Li K, et al. Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis Oncol. 2021;5:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ikegami M, Kohsaka S, Ueno T, Momozawa Y, Inoue S, Tamura K, et al. High-throughput functional evaluation of BRCA2 variants of unknown significance. Nat Commun. 2020;11:2573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xia R, Xu M, Yang J, Ma X. The role of Hedgehog and Notch signaling pathway in cancer. Mol Biomed. 2022;3:44.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suchors C, Kim J. Canonical Hedgehog pathway and noncanonical GLI transcription factor activation in cancer. Cells. 2022;11.

  32. Mani C, Tripathi K, Omy TR, Reedy M, Manne U, Palle K. GLI1-targeting drugs induce replication stress and homologous recombination deficiency and synergize with PARP-targeted therapies in triple negative breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 2022;1868:166300.

    Article  CAS  PubMed  Google Scholar 

  33. Mani C, Tripathi K, Chaudhary S, Somasagara RR, Rocconi RP, Crasto C, et al. Hedgehog/GLI1 transcriptionally regulates FANCD2 in ovarian tumor cells: its inhibition induces HR-deficiency and synergistic lethality with PARP inhibition. Neoplasia. 2021;23:1002–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palle K, Mani C, Tripathi K, Athar M. Aberrant GLI1 activation in DNA damage response, carcinogenesis and chemoresistance. Cancers. 2015;7:2330–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoshioka KI, Kusumoto-Matsuo R, Matsuno Y, Ishiai M. Genomic instability and cancer risk associated with erroneous DNA Repair. Int J Mol Sci. 2021;22:12254.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining genome integrity: protein kinases and phosphatases orchestrate the balancing act of DNA double-strand breaks repair in cancer. Int J Mol Sci. 2023;24:10212.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brambati A, Sacco O, Porcella S, Heyza J, Kareh M, Schmidt JC, et al. RHINO directs MMEJ to repair DNA breaks in mitosis. Science. 2023;381:653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fleury H, MacEachern MK, Stiefel CM, Anand R, Sempeck C, Nebenfuehr B, et al. The APE2 nuclease is essential for DNA double-strand break repair by microhomology-mediated end joining. Mol Cell. 2023;83:1429–1445 e1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chandramouly G, Jamsen J, Borisonnik N, Tyagi M, Calbert ML, Tredinnick T, et al. Pollambda promotes microhomology-mediated end-joining. Nat Struct Mol Biol. 2023;30:107–14.

    Article  CAS  PubMed  Google Scholar 

  40. Apelt K, Lans H, Scharer OD, Luijsterburg MS. Nucleotide excision repair leaves a mark on chromatin: DNA damage detection in nucleosomes. Cell Mol Life Sci. 2021;78:7925–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Renaudin X, Rosselli F. The FANC/BRCA pathway releases replication blockades by eliminating DNA interstrand cross-links. Genes (Basel). 2020;11:585

    Article  CAS  PubMed  Google Scholar 

  42. Nayak S, Calvo JA, Cantor SB. Targeting translesion synthesis (TLS) to expose replication gaps, a unique cancer vulnerability. Expert Opin Ther Targets. 2021;25:27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet. 2022;141:1811–36.

    Article  CAS  PubMed  Google Scholar 

  44. Nieddu V, Melocchi V, Battistini C, Franciosa G, Lupia M, Stellato C, et al. Matrix Gla Protein drives stemness and tumor initiation in ovarian cancer. Cell Death Dis. 2023;14:220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karin-Kujundzic V, Covarrubias-Pinto A, Skrtic A, Vranic S, Serman L. New insight into the role of PTCH1 protein in serous ovarian carcinomas. Int J Oncol. 2022;61:145.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kuehn J, Espinoza-Sanchez NA, Teixeira F, Pavao MSG, Kiesel L, Gyorffy B, et al. Prognostic significance of hedgehog signaling network-related gene expression in breast cancer patients. J Cell Biochem. 2021;122:577–97.

    Article  CAS  PubMed  Google Scholar 

  47. Guo P, Chen Q, Peng K, Xie J, Liu J, Ren W, et al. Nuclear receptor coactivator SRC-1 promotes colorectal cancer progression through enhancing GLI2-mediated Hedgehog signaling. Oncogene. 2022;41:2846–59.

    Article  CAS  PubMed  Google Scholar 

  48. Kotulak-Chrzaszcz A, Kmiec Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med. 2021;47.

  49. Lama-Sherpa TD, Lin VTG, Metge BJ, Weeks SE, Chen D, Samant RS, et al. Hedgehog signaling enables repair of ribosomal DNA double-strand breaks. Nucleic Acids Res. 2020;48:10342–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akagi T, Sasai K, Hanafusa H. Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. Proc Natl Acad Sci USA. 2003;100:13567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hirose T, Ikegami M, Kojima S, Yoshida A, Endo M, Shimada E, et al. Extensive analysis of 59 sarcoma-related fusion genes identified pazopanib as a potential inhibitor to COL1A1-PDGFB fusion gene. Cancer Sci. 2023;114:4089–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koga T, Suda K, Mitsudomi T. Utility of the Ba/F3 cell system for exploring on-target mechanisms of resistance to targeted therapies for lung cancer. Cancer Sci. 2022;113:815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, et al. SynergyFinder plus: toward better interpretation and annotation of drug combination screening datasets. Genomics Proteom Bioinform. 2022;20:587–96.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the members of our division, particularly A. Maruyama-Shiino, Y. Ono, and M. Takeyama for technical assistance.

Funding

This study was supported by the grants of Practical Research for Innovative Cancer Control (grant no. JP22ck0106536), Program for Promoting Platform of Genomics based Drug Discovery (grant no. JP23kk0305018), and Moonshot Research and Development Program (grant no. JP22zf0127009) from Japan Agency for Medical Research and Development (AMED), and also supported by the JSPS Grants-in-Aid for Scientific Research (B) (grant no. JP21H02795).

Author information

Authors and Affiliations

Authors

Contributions

SK conceived of the project and designed the study. SK and HM developed the study methodology. HI, YM., and RKM performed experiments. HO, YK, KY, and YY provided clinical samples. HI, TU, MI, and SK analyzed and interpreted the data. KY, KT, KS, and HM provided the administrative and technical support. HI, YM, RKM, HM, and SK wrote and edited the manuscript with feedback from all authors.

Corresponding author

Correspondence to Shinji Kohsaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeuchi, H., Matsuno, Y., Kusumoto-Matsuo, R. et al. GLI1 confers resistance to PARP inhibitors by activating the DNA damage repair pathway. Oncogene 43, 3037–3048 (2024). https://doi.org/10.1038/s41388-024-03105-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03105-1

This article is cited by

Search

Quick links