Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Delactylase effects of SIRT1 on a positive feedback loop involving the H19-glycolysis-histone lactylation in gastric cancer

Abstract

Histone lactylation, a novel epigenetic modification, is regulated by the lactate produced by glycolysis. Glycolysis is activated in various cancers, including gastric cancer (GC). However, the molecular mechanism and clinical impact of histone lactylation in GC remain poorly understood. Here, we demonstrate that histone H3K18 lactylation (H3K18la) is elevated in GC, correlating with a worse prognosis. SIRT1 overexpression decreases H3K18la levels, whereas SIRT1 knockdown increases H3K18la levels in GC cells. RNA-seq analysis demonstrates that lncRNA H19 is markedly downregulated in GC cells with SIRT1 overexpression and those grown under glucose free condition, which confirmed decreased H3K18la levels at its promoter region. H19 knockdown decreased the expression levels of LDHA and H3K18la, and LDHA knockdown impaired H19 and H3K18la expression, suggesting an H19/glycolysis/H3K18la-positive feedback loop. Combined treatment with low doses of the SIRT1-specific activator SRT2104 and the LDHA inhibitor oxamate exerted significant antitumor effects on GC cells, with limited adverse effects on normal gastric cells. The SIRT1-weak/H3K18la-strong signature was found to be an independent prognostic factor in patients with GC. Therefore, SIRT1 acts as a histone delactylase for H3K18, and loss of SIRT1 triggers a positive feedback loop involving H19/glycolysis/H3K18la. Targeting this pathway serves as a novel therapeutic strategy for GC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aberrant levels of global lactylated-lysine (panKla) and H3K18la predict poorer prognosis in patients with gastric cancer.
Fig. 2: SIRT1 acts as a histone delactylase and suppresses cell proliferation and migration.
Fig. 3: Identification of the downregulated genes via histone delactylation in human gastric cancer cell lines.
Fig. 4: H19 promotes aerobic glycolysis and lactylation, upregulating the expression of glycolysis-related genes, including LDHA.
Fig. 5: Dual treatments, inhibition of glycolysis and activation of SIRT1, exhibits a synergistic effect on cell viability.
Fig. 6: The gastric cancer group with weak SIRT1 and strong H19 experiences worse overall survival and recurrence-free survival than other GC groups.

Similar content being viewed by others

Data availability

The authors affirm that all data supporting the conclusions of this research are accessible within the article and its Supplementary Information files or can be obtained from the corresponding author upon reasonable request. Our RNA-seq data are registered as GSE276703 and GSE276926.

References

  1. Morgan E, Arnold M, Camargo MC, Gini A, Kunzmann AT, Matsuda T, et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: a population-based modelling study. Eclinicalmedicine. 2022;47:101404.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wong MCS, Huang J, Chan PSF, Choi P, Lao XQ, Chan SM, et al. Global incidence and mortality of gastric cancer, 1980–2018. JAMA Netw Open. 2021;4:e2118457.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Totoki Y, Saito-Adachi M, Shiraishi Y, Komura D, Nakamura H, Suzuki A, et al. Multiancestry genomic and transcriptomic analysis of gastric cancer. Nat Genet. 2023;55:581–94.

    Article  CAS  PubMed  Google Scholar 

  4. Seidlitz T, Schmache T, Garciotaa F, Lee JH, Qin N, Kochall S, et al. Sensitivity towards HDAC inhibition is associated with RTK/MAPK pathway activation in gastric cancer. EMBO Mol Med. 2022;14:e15705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Warburg O. The chemical constitution of respiration ferment. Science. 1928;68:437–43.

    Article  CAS  PubMed  Google Scholar 

  6. Abbassi-Ghadi N, Kumar S, Huang J, Goldin R, Takats Z, Hanna GB. Metabolomic profiling of oesophago-gastric cancer: a systematic review. Eur J Cancer. 2013;49:3625–37.

    Article  CAS  PubMed  Google Scholar 

  7. Huang S, Guo Y, Li Z, Zhang Y, Zhou T, You W, et al. A systematic review of metabolomic profiling of gastric cancer and esophageal cancer. Cancer Biol Med. 2020;17:181–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan DA, Sutphin PD, Nguyen P, Turcotte S, Lai EW, Banh A, et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med. 2011;3:94ra70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang L, Yang Q, Peng S, Liu X. The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cells. Onco Targets Ther. 2019;12:5359–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30:4297–306.

    Article  CAS  PubMed  Google Scholar 

  11. Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y. Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018;7:6124–36.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019;150:104511.

    Article  CAS  PubMed  Google Scholar 

  13. Huo M, Zhang J, Huang W, Wang Y. Interplay among metabolism, epigenetic modifications, and gene expression in cancer. Front Cell Dev Biol. 2021;9:793428.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie Y, Hu H, Liu M, Zhou T, Cheng X, Huang W, et al. The role and mechanism of histone lactylation in health and diseases. Front Genet. 2022;13:949252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 2024;20:114–30.

    Article  CAS  PubMed  Google Scholar 

  17. Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang D, Yin J, Shan L, Yi X, Zhang W, Ding Y. Identification of lysine-lactylated substrates in gastric cancer cells. iScience. 2022;25:104630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie B, Lin J, Chen X, Zhou X, Zhang Y, Fan M, et al. CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer. 2023;22:151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moreno-Yruela C, Zhang D, Wei W, Baek M, Liu W, Gao J, et al. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci Adv. 2022;8:eabi6696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022;7:402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zu H, Li C, Dai C, Pan Y, Ding C, Sun H, et al. SIRT2 functions as a histone delactylase and inhibits the proliferation and migration of neuroblastoma cells. Cell Discov. 2022;8:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang R, Li C, Cheng Z, Li M, Shi J, Zhang Z, et al. H3K9 lactylation in malignant cells facilitates CD8(+) T cell dysfunction and poor immunotherapy response. Cell Rep. 2024;43:114686.

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Liu X, Xiao R, Fang Y, Zhou F, Gu M, et al. Histone lactylation dynamics: Unlocking the triad of metabolism, epigenetics, and immune regulation in metastatic cascade of pancreatic cancer. Cancer Lett. 2024;598:217117.

    Article  CAS  PubMed  Google Scholar 

  25. Blander G, Olejnik J, Krzymanska-Olejnik E, McDonagh T, Haigis M, Yaffe MB, et al. SIRT1 shows no substrate specificity in vitro. J Biol Chem. 2005;280:9780–5.

    Article  CAS  PubMed  Google Scholar 

  26. Montie HL, Pestell RG, Merry DE. SIRT1 modulates aggregation and toxicity through deacetylation of the androgen receptor in cell models of SBMA. J Neurosci. 2011;31:17425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008;105:3374–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Domanegg K, Sleeman JP, Schmaus A. CEMIP, a promising biomarker that promotes the progression and metastasis of colorectal and other types of cancer. Cancers (Basel). 2022;14:5093.

    Article  CAS  PubMed  Google Scholar 

  29. Guo W, Zhang C, Feng P, Li M, Wang X, Xia Y, et al. M6A methylation of DEGS2, a key ceramide-synthesizing enzyme, is involved in colorectal cancer progression through ceramide synthesis. Oncogene. 2021;40:5913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hua T, Wang RM, Zhang XC, Zhao BB, Fan SB, Liu DX, et al. ZNF76 predicts prognosis and response to platinum chemotherapy in human ovarian cancer. Biosci Rep. 2021;41:BSR20212026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mizuguchi Y, Sakamoto T, Hashimoto T, Tsukamoto S, Iwasa S, Saito Y, et al. Identification of a novel PRR15L-RSPO2 fusion transcript in a sigmoid colon cancer derived from superficially serrated adenoma. Virchows Arch. 2019;475:659–63.

    Article  CAS  PubMed  Google Scholar 

  32. Smits G, Mungall AJ, Griffiths-Jones S, Smith P, Beury D, Matthews L, et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat Genet. 2008;40:971–6.

    Article  CAS  PubMed  Google Scholar 

  33. Gan L, Lv L, Liao S. Long non‑coding RNA H19 regulates cell growth and metastasis via the miR‑22‑3p/Snail1 axis in gastric cancer. Int J Oncol. 2019;54:2157–68.

    CAS  PubMed  Google Scholar 

  34. Chen S, Wang H, Xu P, Dang S, Tang Y. H19 encourages aerobic glycolysis and cell growth in gastric cancer cells through the axis of microRNA-19a-3p and phosphoglycerate kinase 1. Sci Rep. 2023;13:17181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun L, Li J, Yan W, Yao Z, Wang R, Zhou X, et al. H19 promotes aerobic glycolysis, proliferation, and immune escape of gastric cancer cells through the microRNA-519d-3p/lactate dehydrogenase A axis. Cancer Sci. 2021;112:2245–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhai X, Yang Y, Wan J, Zhu R, Wu Y. Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncol Rep. 2013;30:2983–91.

    Article  CAS  PubMed  Google Scholar 

  37. Curry AM, White DS, Donu D, Cen Y. Human sirtuin regulators: the “Success” stories. Front Physiol. 2021;12:752117.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miyaji N, Nishida K, Tanaka T, Araki D, Kanzaki N, Hoshino Y, et al. Inhibition of knee osteoarthritis progression in mice by administering SRT2014, an activator of silent information regulator 2 ortholog 1. Cartilage. 2021;13:1356S–66S.

    Article  CAS  PubMed  Google Scholar 

  39. Niu Z, Chen C, Wang S, Lu C, Wu Z, Wang A, et al. HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription. Nat Commun. 2024;15:3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei S, Zhang J, Zhao R, Shi R, An L, Yu Z, et al. Histone lactylation promotes malignant progression by facilitating USP39 expression to target PI3K/AKT/HIF-1alpha signal pathway in endometrial carcinoma. Cell Death Discov. 2024;10:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jang SH, Min KW, Paik SS, Jang KS. Loss of SIRT1 histone deacetylase expression associates with tumour progression in colorectal adenocarcinoma. J Clin Pathol. 2012;65:735–9.

    Article  PubMed  Google Scholar 

  42. Yang Q, Wang B, Gao W, Huang S, Liu Z, Li W, et al. SIRT1 is downregulated in gastric cancer and leads to G1-phase arrest via NF-kappaB/Cyclin D1 signaling. Mol Cancer Res. 2013;11:1497–507.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Cai X, Chai N, Gu Y, Zhang S, Ding M, et al. SIRT1 Is Reduced in Gastric Adenocarcinoma and Acts as a Potential Tumor Suppressor in Gastric Cancer. Gastrointestinal Tumors. 2015;2:109–23.

    Article  CAS  Google Scholar 

  44. Latifkar A, Ling L, Hingorani A, Johansen E, Clement A, Zhang X, et al. Loss of Sirtuin 1 Alters the Secretome of Breast Cancer Cells by Impairing Lysosomal Integrity. Dev Cell. 2019;49:393–408.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dong G, Wang B, An Y, Li J, Wang X, Jia J, et al. SIRT1 suppresses the migration and invasion of gastric cancer by regulating ARHGAP5 expression. Cell Death Dis. 2018;9:977.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chu ZY, Yang J, Zheng W, Sun JW, Wang WN, Qian HS. Recent advances on modulation of H2O2 in tumor microenvironment for enhanced cancer therapeutic efficacy. Coordination Chem Rev. 2023;481:215049.

    Article  CAS  Google Scholar 

  47. Ohshima K, Nojima S, Tahara S, Kurashige M, Kawasaki K, Hori Y, et al. Serine racemase enhances growth of colorectal cancer by producing pyruvate from serine. Nat Metab. 2020;2:81–96.

    Article  CAS  PubMed  Google Scholar 

  48. Yegutkin GG, Boison D. ATP and adenosine metabolism in cancer: exploitation for therapeutic gain. Pharmacol Rev. 2022;74:797–822.

    Article  PubMed  Google Scholar 

  49. Hsu WW, Wu B, Liu WR. Sirtuins 1 and 2 are universal histone deacetylases. ACS Chem Biol. 2016;11:792–9.

    Article  CAS  PubMed  Google Scholar 

  50. Halasa M, Wawruszak A, Przybyszewska A, Jaruga A, Guz M, Kalafut J, et al. H3K18Ac as a marker of cancer progression and potential target of anti-cancer therapy. Cells. 2019;8:485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012;487:114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jia J, Zhang X, Zhan D, Li J, Li Z, Li H, et al. LncRNA H19 interacted with miR-130a-3p and miR-17-5p to modify radio-resistance and chemo-sensitivity of cardiac carcinoma cells. Cancer Med. 2019;8:1604–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene. 2018;37:1062–74.

    Article  CAS  PubMed  Google Scholar 

  54. Rong Y, Dong F, Zhang G, Tang M, Zhao X, Zhang Y, et al. The crosstalking of lactate-Histone lactylation and tumor. Proteomics Clin Appl. 2023;17:e2200102.

    Article  PubMed  Google Scholar 

  55. Pan RY, He L, Zhang J, Liu X, Liao Y, Gao J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 2022;34:634–48.e6.

    Article  CAS  PubMed  Google Scholar 

  56. Liu X, Yang Z, Chen Z, Chen R, Zhao D, Zhou Y, et al. Effects of the suppression of lactate dehydrogenase A on the growth and invasion of human gastric cancer cells. Oncol Rep. 2015;33:157–62.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao Z, Han F, Yang S, Wu J, Zhan W. Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: involvement of the Akt-mTOR signaling pathway. Cancer Lett. 2015;358:17–26.

    Article  CAS  PubMed  Google Scholar 

  58. Bertelli AA, Giovannini L, Giannessi D, Migliori M, Bernini W, Fregoni M, et al. Antiplatelet activity of synthetic and natural resveratrol in red wine. Int J Tissue React. 1995;17:1–3.

    CAS  PubMed  Google Scholar 

  59. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.

    Article  CAS  PubMed  Google Scholar 

  60. Yang Q, Wang B, Zang W, Wang X, Liu Z, Li W, et al. Resveratrol inhibits the growth of gastric cancer by inducing G1 phase arrest and senescence in a Sirt1-dependent manner. PLoS One. 2013;8:e70627.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450:712–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller JJ, Fink A, Banagis JA, Nagashima H, Subramanian M, Lee CK, et al. Sirtuin activation targets IDH-mutant tumors. Neuro Oncol. 2021;23:53–62.

    Article  CAS  PubMed  Google Scholar 

  63. Han L, Long Q, Li S, Xu Q, Zhang B, Dou X, et al. Senescent stromal cells promote cancer resistance through SIRT1 loss-potentiated overproduction of small extracellular vesicles. Cancer Res. 2020;80:3383–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krueger JG, Suarez-Farinas M, Cueto I, Khacherian A, Matheson R, Parish LC, et al. A randomized, placebo-controlled study of SRT2104, a SIRT1 activator, in patients with moderate to severe psoriasis. PLoS One. 2015;10:e0142081.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    Article  CAS  PubMed  Google Scholar 

  66. Sano T, Coit DG, Kim HH, Roviello F, Kassab P, Wittekind C, et al. Proposal of a new stage grouping of gastric cancer for TNM classification: International Gastric Cancer Association staging project. Gastric Cancer. 2017;20:217–25.

    Article  PubMed  Google Scholar 

  67. Japanese Gastric Cancer A. Japanese Gastric Cancer Treatment Guidelines 2021 (6th edition). Gastric Cancer. 2023;26:1–25.

    Article  Google Scholar 

  68. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study received funding support from Grants-in-Aid for Scientific Research (A, JP19H01055; B, JP23H02979, JP23K27670, JP24K02320), and Challenging Research (Exploratory, 20K21627, and 22K19554) by JSPS KAKENHI; and P-CREATE (JP19cm0106540) and Program for Basic and Clinical Research on Hepatitis (JP24fk0210136, JP24fk0210102, JP24fk0210106, JP24fk0210149) by the Japan Agency for Medical Research and Development (AMED); and Research Grant by the Princess Takamatsu Cancer Research Fund. We also thank Editage (https://www.editage.com) for English language editing and BioRender (https://www.biorender.com) for figure creation. Special thanks go to Ms. Hiromi Onari for her clerical assistance.

Author information

Authors and Affiliations

Authors

Contributions

STsukihara, YA, and STanaka designed the study and wrote the manuscript. STsukihara, YA, and SS performed the cell biology, histopathology, and bioinformatics analyses. STsukihara, YI, TT, YT, KK, KY, KU, AK, AN and KO contributed to data curation. STsukihara, KO, MT, HK, SI contributed to sample collections. YA, SS, MH, MT, TI, KE, and YK helped write, review, and edit the manuscript. STanaka was responsible for the overall content of this study.

Corresponding authors

Correspondence to Yoshimitsu Akiyama or Shinji Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

This study was approved by the Ethics Committee of the Faculty of Medicine at Tokyo Medical and Dental University (permission no. M2000-1115-04), and written informed consent was obtained from all patients. Patients were anonymously coded in accordance with the ethical guidelines of the Declaration of Helsinki. The mouse procedures were approved by the Institutional Animal Care and Use Committee of Tokyo Medical and Dental University (permission number 0170135 A).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukihara, S., Akiyama, Y., Shimada, S. et al. Delactylase effects of SIRT1 on a positive feedback loop involving the H19-glycolysis-histone lactylation in gastric cancer. Oncogene 44, 724–738 (2025). https://doi.org/10.1038/s41388-024-03243-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03243-6

This article is cited by

Search

Quick links