Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternative splicing of bunched confers a dual role in hippo pathway-dependent growth and tumorigenesis

Abstract

Alternative splicing is a fundamental mechanism that generates functionally distinct proteins from individual genes, contributing to gene regulation and proteomic diversity. In Drosophila, the bunched (bun) gene, a member of the TSC-22 domain gene family, undergoes alternative splicing, yielding diverse protein isoforms involved in crucial biological processes. Nevertheless, the specific roles and regulatory mechanisms of each isoform remain elusive. Here, we employed CRISPR/Cas9 technology to introduce targeted deletions within the endogenous locus of the bun gene, resulting in the removal of either long or short isoforms. We discovered that the short isoforms demonstrated a growth-suppressive role, whereas the long isoforms exhibited a growth-promoting effect. Surprisingly, the long isoforms exhibited a remarkable dual functionality, as both deletion and amplification of long isoform expression impede the excess growth induced by Hippo pathway inactivation. Mechanistically, ectopically expressed Bun long isoforms act as the transcriptional suppressor by competitively binding to targets’ promoter regions in conjunction with Yorkie/Scalloped (Yki/Sd), thereby inhibiting its transcriptional outputs and ultimately leading to the growth suppression. These findings unveil the intricate interaction between distinct spliced isoforms of Bun and oncogenic outcomes, highlighting Bun long isoforms as the critical transcription suppressor regulating Hippo pathway inactivation-mediated growth and tumorigenesis in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenotypic characterization of splicing specific bun mutants.
Fig. 2: Ectopic expression of long isoform BunA exhibits dual roles in different genetic backgrounds.
Fig. 3: The long isoform BunA competes with Sd for binding to the Hippo pathway targets.
Fig. 4: BunA overexpression restricts tissue growth and represses the transcription activation of Hippo pathway target genes.
Fig. 5: BunA overexpression inhibits Hippo signaling inactivation-induced overgrowth and tumorigenesis.

Similar content being viewed by others

Data availability

Raw sequencing data for the three BunA CUT&Tag replicates has been submitted to the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE274246) under the accession number of GSE274246.

References

  1. Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 2001;17:100–7.

    Article  CAS  PubMed  Google Scholar 

  2. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463:457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sammeth M, Foissac S, Guigo R. A general definition and nomenclature for alternative splicing events. PLoS Comput Biol. 2008;4:e1000147.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Srivastava D, de Toledo M, Manchon L, Tazi J, Juge F. Modulation of Yorkie activity by alternative splicing is required for developmental stability. EMBO J. 2021;40:e104895.

    Article  CAS  PubMed  Google Scholar 

  5. Tsang M-J, Cheeseman IM. Alternative CDC20 translational isoforms tune mitotic arrest duration. Nature. 2023;617:154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Su Z, Huang D. Alternative splicing of Pre-mRNA in the control of immune activity. Genes. 2021;12:574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones L, Naidoo M, Machado LR, Anthony K. The Duchenne muscular dystrophy gene and cancer. Cell Oncol. 2020;44:19–32.

    Article  Google Scholar 

  8. Ladomery MR, Harper SJ, Bates DO. Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. CANCER LETTERS. 2007;249:133–42.

    Article  CAS  PubMed  Google Scholar 

  9. Shao Y, Chong W, Liu X, Xu Y, Zhang H, Xu Q, et al. Alternative splicing-derived intersectin1-L and intersectin1-S exert opposite function in glioma progression. Cell Death Dis. 2019;10:431.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boise LH, GonzBlez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74:597–608.

    Article  CAS  PubMed  Google Scholar 

  11. Boeckx B, Shahi RB, Smeets D, De Brakeleer S, Decoster L, Van Brussel T, et al. The genomic landscape of nonsmall cell lung carcinoma in never smokers. Int J Cancer. 2020;146:3207–18.

    Article  CAS  PubMed  Google Scholar 

  12. Xu XQ, Sun R, Li YZ, Wang JX, Zhang M, Xiong X, et al. Comprehensive bioinformatic analysis of the expression and prognostic significance of TSC22D domain family genes in adult acute myeloid leukemia. BMC Med Genomics. 2023;16:117.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nakamura M, Kitaura J, Enomoto Y, Lu Y, Nishimura K, Isobe M, et al. Transforming growth factor-β-stimulated clone-22 is a negative-feedback regulator of Ras/Raf signaling: Implications for tumorigenesis. Cancer Sci. 2012;103:26–33.

    Article  CAS  PubMed  Google Scholar 

  14. Huser CA, Pringle MA, Heath VJ, Bell AK, Kendrick H, Smalley MJ, et al. TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death Differ. 2010;17:304–15.

    Article  CAS  PubMed  Google Scholar 

  15. Gluderer S, Oldham S, Rintelen F, Sulzer A, Schütt C, Wu X, et al. Bunched, the Drosophila homolog of the mammalian tumor suppressor TSC-22, promotes cellular growth. BMC developmental Biol. 2008;8:10.

    Article  Google Scholar 

  16. Shibanuma M, Kuroki T, Nose K. Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor beta 1 and other growth factors. J Biol Chem. 1992;267:10219–24.

    Article  CAS  PubMed  Google Scholar 

  17. Kester HA, Blanchetot C, den Hertog J, van der Saag PT, van der Burg B. Transforming growth factor-beta-stimulated clone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerize and has transcriptional repressor activity. J Biol Chem. 1999;274:27439–47.

    Article  CAS  PubMed  Google Scholar 

  18. Landschulz WH, Johnson PF, McKnight SL. The Leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988;240:1759–64.

    Article  CAS  PubMed  Google Scholar 

  19. O’Shea EK, Rutkowski R, Kim PS. Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell. 1992;68:699–708.

    Article  PubMed  Google Scholar 

  20. Treisman JE, Lai Z-C, Rubin GM. shortsighted acts in the decapentaplegic pathway in Drosophila eye development and has homology to a mouse TGF-β-responsive gene. Development. 1995;121:2835–45.

    Article  CAS  PubMed  Google Scholar 

  21. Dobens LL. Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary. Dev Genes Evolut. 2000;127:745–54.

    CAS  Google Scholar 

  22. Wu X, Yamada-Mabuchi M, Morris EJ, Tanwar PS, Dobens L, Gluderer S, et al. The Drosophila homolog of human tumor suppressor TSC-22 promotes cellular growth, proliferation, and survival. Proc Natl Acad Sci USA. 2008;105:5414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gluderer S, Brunner E, Germann M, Jovaisaite V, Li C, Rentsch CA, et al. Madm (Mlf1 adapter molecule) cooperates with Bunched A to promote growth in Drosophila. J Biol. 2010;9:9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep. 2014;9:1151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oh H, Irvine KD. in vivo regulation of Yorkie phosphorylation and localization. Development. 2008;135:1081–8.

    Article  CAS  PubMed  Google Scholar 

  26. Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science. 2003;14:1227–31.

    Article  Google Scholar 

  27. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brumby AM, Richardson HE. scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J. 2003;3:5769–79.

    Article  Google Scholar 

  29. Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE. Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene. 2008;27:6888–907.

    Article  CAS  PubMed  Google Scholar 

  30. Ma X, Lu JY, Dong Y, Li D, Malagon JN, Xu T. PP6 disruption synergizes with oncogenic Ras to promote JNK-dependent tumor growth and invasion. Cell Rep. 2017;19:2657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma X, Lu JY, Moraru A, Teleman AA, Fang J, Qiu Y, et al. A novel regulator of ER Ca(2+) drives Hippo-mediated tumorigenesis. Oncogene. 2020;39:1378–87.

    Article  CAS  PubMed  Google Scholar 

  32. Fish MP, Groth AC, Calos MP, Nusse R. Creating transgenic Drosophila by microinjecting the site-specific φC31 integrase mRNA and a transgene-containing donor plasmid. Nat Protoc. 2007;2:2325–31.

    Article  CAS  PubMed  Google Scholar 

  33. Ohta S, Shimekake Y, Nagata K. Molecular cloning and characterization of a transcription factor for the C-type natriuretic peptide gene promoter. Eur J Biochem. 1996;242:460–6.

    Article  CAS  PubMed  Google Scholar 

  34. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol. 2002;20:473–7.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Ren F, Zhang Q, Chen Y, Wang B, Jiang J. The TEAD/TEF family of transcription factor scalloped mediates hippo signaling in organ size control. Dev Cell. 2008;14:377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell. 2005;122:421–34.

    Article  CAS  PubMed  Google Scholar 

  37. Badouel C, Gardano L, Amin N, Garg A, Rosenfeld R, Le Bihan T, et al. The FERM-domain protein expanded regulates hippo pathway activity via direct interactions with the transcriptional activator yorkie. Dev Cell. 2009;16:411–20.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Milton CC, Poon CLC, Hong W, Harvey KF. Wbp2 cooperates with Yorkie to drive tissue growth downstream of the Salvador-Warts-Hippo pathway. Cell Death Differ. 2011;18:1346–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nie Y, Li Q, Amcheslavsky A, Duhart JC, Veraksa A, Stocker H, et al. Bunched and madm function downstream of tuberous sclerosis complex to regulate the growth of intestinal stem cells in drosophila. Stem cell Rev Rep. 2015;11:813–25.

    Article  CAS  PubMed  Google Scholar 

  40. Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol. 2003;5:914–20.

    Article  CAS  PubMed  Google Scholar 

  41. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C, et al. The tumor-suppressor genes NF2/Merlin and expanded act through Hippo signaling to regulate cell proliferation and apoptosis. Nat Cell Biol. 2006;8:27–36.

    Article  CAS  PubMed  Google Scholar 

  42. Chen C-L, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C, et al. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci. 2010;107:15810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. El Marabti E, Younis I. The cancer spliceome: reprograming of alternative splicing in cancer. Front Mol Biosci. 2018;5:80.

  44. Hattori D, Demir E, Kim HW, Viragh E, Zipursky SL, Dickson BJ. Dscam diversity is essential for neuronal wiring and self-recognition. Nature. 2007;449:223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marasco LE, Kornblihtt AR. The physiology of alternative splicing. Nat Rev Mol Cell Biol. 2022;24:242–54.

    Article  PubMed  Google Scholar 

  46. Seidel G, Adermann K, Schindler T, Ejchart A, Jaenicke R, Forssmann W-G, et al. Solution structure of porcine delta sleep-inducing peptide immunoreactive peptide a homolog of the shortsightedgene product. J Biol Chem. 1997;272:30918–27.

    Article  CAS  PubMed  Google Scholar 

  47. Campbell S, Inamdar M, Rodrigue V, Raghavan V, Palazzolo M, Chovnick A. The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila. Genes Dev. 1992;6:367–79.

    Article  CAS  PubMed  Google Scholar 

  48. Goulev Y, Fauny JD, Gonzalez-Marti B, Flagiello D, Silber JL, Zider A. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol. 2008;18:435–41.

    Article  CAS  PubMed  Google Scholar 

  49. Pietenpol JA, Holt JT, Stein RW, Moses HL. Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation. Proc Natl Acad Sci USA. 1990;87:3758–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Tian Xu, Lei Xue, Bloomington Drosophila Stock Center, Vienna Drosophila Resource Center, TsingHua Fly Center, and DSHB for providing fly stocks and reagents. We thank Wenhan Liu from our lab for fly stock maintenance. Cartoon illustrations in the manuscript were created with BioRender.com. This work was supported by startup funds from Westlake University9uj and grants from the National Natural Science Foundation of China (32170824, 32322027) to XM and (32370710) to YZ, HRHI program (1011103360222B1) of Westlake Laboratory of Life Sciences and Biomedicine to XM, Westlake Laboratory of Life Sciences and Biomedicine (10128A092001), and “Team for Growth Control and Size Innovative Research” (201804016). YZ is also supported by the National Key Research and Development Program (2022YFA1302700).

Author information

Authors and Affiliations

Authors

Contributions

XM conceived and designed the study; XM, YZ, and PG designed the experiments and analyzed the data; PG performed the majority of the experiments with the help and input from SS, DZ, XK, and ZZ; YN performed CUT&Tag analyses; XM, SS, XK, and PG wrote the original manuscript; XM, PG, and SS wrote the revised manuscript.

Corresponding authors

Correspondence to Yanxiao Zhang or Xianjue Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The authors confirm that all methods were performed in accordance with the relevant guidelines and regulations. All animal procedures were performed following the guidelines of the Institutional Animal Care and Use Committee (IACUC) of Westlake University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Song, S., Niu, Y. et al. Alternative splicing of bunched confers a dual role in hippo pathway-dependent growth and tumorigenesis. Oncogene 44, 1949–1960 (2025). https://doi.org/10.1038/s41388-025-03348-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03348-6

Search

Quick links