Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple anti-tumor programs are activated by blocking BAD phosphorylation

Abstract

The Bcl-2 family member BAD is a candidate disease modulator because it stimulates apoptosis in a cell context basis and inhibits cell migration during normal mammary gland morphogenesis. This activity depends on 3 key regulatory serines (S75, 99, 118) in the unphosphorylated state. Given that developmental programs are often hijacked in cancer, we hypothesized that BAD would impede breast cancer progression. We generated breast cancer mouse models representing loss-of-function or phosphorylation deficient mutations (PyMT-Bad−/− and PyMT-Bad3SA/3SA, respectively). Preventing BAD phosphorylation significantly decreased breast cancer progression and metastasis. The knock-out phenocopied the control PyMT-Bad+/+ suggesting that phosphorylated BAD protein was inert. Thus, the BAD3SA mutation unmasked latent anti-tumor activity. Indeed, transcriptomics showed PyMT-Bad3SA/3SA activated multiple anti-tumor programs including apoptosis, inflammation, cellular differentiation, and diminished cell migration. This anti-tumor effect associated with clinical survival of breast cancer patients whose tumors had high levels of unphosphorylated BAD. Kinase screens identified ERK as the major BAD kinase in breast cells, and ERK inhibition impeded tumoroid invasion. Our data suggest that unphosphorylated BAD modulates anti-tumor pathways that contribute to excellent patient prognosis. Thus, targeting ERK to dephosphorylate BAD may be an exciting therapeutic opportunity in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bad3SA delays tumor progression in MMTV-PyMT breast cancer model.
Fig. 2: RNA-seq screen identifies molecular markers that are altered in PyMT-Bad3SA.
Fig. 3: PyMT-Bad3SA tumors are sensitized to apoptosis and are more functionally differentiated.
Fig. 4: PyMT-Bad3SA impedes breast cancer invasion and metastasis in vitro and in vivo.
Fig. 5: BAD phosphorylation is prognostic for breast cancer patient overall survival.
Fig. 6: BAD is phosphorylated via the MEK-ERK pathway.
Fig. 7: The ERK pathway is paramount for breast tumor invasion.

Similar content being viewed by others

Data availability

Uncropped raw blots underlying the figures are in Supplementary Table 4. RNA-seq raw paired-end sequencing reads (fastq format) and complete DESeq2 analysis are deposited in the Gene Expression Omnibus (GEO) public repository, accession GSE196626. Main functions, packages, and modules used in MATLAB(version R2022a/b), R(version 4.2.2), and Python (version 3.9,) respectively, as well as bi-directional communication and data exchange between MATLAB and R are detailed in the ‘Methods’ and Supplementary File 1. Detailed custom codes and their dependency to reproduce the data are included in Supplementary File 1.

References

  1. Meirson T, Gil-Henn H, Samson AO. Invasion and metastasis: the elusive hallmark of cancer. Oncogene. 2020;39:2024–6.

    Article  CAS  PubMed  Google Scholar 

  2. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast Cancer Statistics, 2022. CA Cancer J Clin. 2022;72:524–41.

    PubMed  Google Scholar 

  3. Pierce GB, Speers WC. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 1988;48:1996–2004.

    CAS  PubMed  Google Scholar 

  4. Condeelis J, Singer RH, Segall JE. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol. 2005;21:695–718.

    Article  CAS  PubMed  Google Scholar 

  5. Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023: 130375.

  6. Githaka JM, Tripathi N, Kirschenman R, Patel N, Pandya V, Kramer DA, et al. BAD regulates mammary gland morphogenesis by 4E-BP1-mediated control of localized translation in mouse and human models. Nat Commun. 2021;12:2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Danial NN. BAD: Undertaker by night, candyman by day. Oncogene 2008; 27: 53.

  8. Boac BM, Abbasi F, Ismail-Khan R, Xiong Y, Siddique A, Park H, et al. Expression of the BAD pathway is a marker of triple-negative status and poor outcome. Sci Rep. 2019;9:17496.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Craik AC, Veldhoen RA, Czernick M, Buckland TW, Kyselytzia K, Ghosh S, et al. The BH3-only protein Bad confers breast cancer taxane sensitivity through a nonapoptotic mechanism. Oncogene. 2010;29:5381–91.

    Article  CAS  PubMed  Google Scholar 

  10. Mann J, Githaka JM, Buckland TW, Yang N, Montpetit R, Patel N, et al. Non-canonical BAD activity regulates breast cancer cell and tumor growth via 14-3-3 binding and mitochondrial metabolism. Oncogene. 2019;38:3325–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mann J, Yang N, Montpetit R, Kirschenman R, Lemieux H, Goping IS. BAD sensitizes breast cancer cells to docetaxel with increased mitotic arrest and necroptosis. Sci Rep. 2020;10:355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma Y-C, Cowan CW, et al. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell. 2002;3:631–43.

    Article  CAS  PubMed  Google Scholar 

  13. Padmanaban V, Grasset EM, Neumann NM, Fraser AK, Henriet E, Matsui W, et al. Organotypic culture assays for murine and human primary and metastatic-site tumors. Nat Protoc 2020;15. https://doi.org/10.1038/s41596-020-0335-3.

  14. Lerner EP, Arjomand Fard N, Githaka JM, Hotte N, Ezeh C, Huynh HQ, et al. Establishment of a National Surgical Tissue Biobank for Pediatric Crohn’s Disease: An Implementation Feasibility Study. J Pediatr Surg 2025;60. https://doi.org/10.1016/J.JPEDSURG.2025.162195.

  15. Pandya V, Githaka JM, Patel N, Veldhoen R, Hugh J, Damaraju S, et al. BIK drives an aggressive breast cancer phenotype through sublethal apoptosis and predicts poor prognosis of ER-positive breast cancer. Cell Death Dis. 2020;11:1–19.

    Article  Google Scholar 

  16. Githaka JM, Vega AR, Baird MA, Davidson MW, Jaqaman K, Touret N. Ligand-induced growth and compaction of CD36 nanoclusters enriched in Fyn induces Fyn signaling. J Cell Sci. 2016;129:4175–89.

    Article  CAS  PubMed  Google Scholar 

  17. Githaka JM. Molnupiravir does not induce mutagenesis in host lung cells during SARS-CoV-2 treatment. Bioinform Biol Insights. 2022;16:11779322221085076.

    Article  Google Scholar 

  18. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  20. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15. https://doi.org/10.1186/S13059-014-0550-8.

  21. Zare A, Postovit L-M, Githaka JM. Robust inflammatory breast cancer gene signature using nonparametric random forest analysis. Breast Cancer Res. 2021;23:1–6.

    Article  Google Scholar 

  22. Gendoo DMA, Ratanasirigulchai N, Schröder MS, Paré L, Parker JS, Prat A, et al. Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer. Bioinformatics. 2016;32:1097–9.

    Article  CAS  PubMed  Google Scholar 

  23. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics. 2019;35:i436–i445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:90.

    Article  Google Scholar 

  25. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol. 1992;12:954–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol. 2003;163:2113–26.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ursini-Siegel J, Hardy WR, Zuo D, Lam SHL, Sanguin-Gendreau V, Cardiff RD, et al. ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J. 2008;27:910–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hong G, Zhang W, Li H, Shen X, Guo Z. Separate enrichment analysis of pathways for up- and downregulated genes. J R Soc Interface 2013;11. https://doi.org/10.1098/RSIF.2013.0950.

  29. Cassier PA, Navaridas R, Bellina M, Rama N, Ducarouge B, Hernandez-Vargas H, et al. Netrin-1 blockade inhibits tumour growth and EMT features in endometrial cancer. Nature. 2023;620:409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fitamant J, Guenebeaud C, Coissieux MM, Guix C, Treilleux I, Scoazec JY, et al. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci USA. 2008;105:4850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ewald AJ, Huebner RJ, Palsdottir H, Lee JK, Perez MJ, Jorgens DM, et al. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci. 2012;125:2638–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Debnath J, Brugge JS. Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer. 2005;5:675–88.

    Article  CAS  PubMed  Google Scholar 

  33. Gorringe KL, Fox SB. Ductal carcinoma in situ biology, biomarkers, and diagnosis. Front Oncol 2017; 7. https://doi.org/10.3389/FONC.2017.00248.

  34. Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell. 2008;14:570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Z, Sandiford S, Wu C, Li SSC. Numb regulates cell-cell adhesion and polarity in response to tyrosine kinase signalling. EMBO J. 2009;28:2360–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020;11. https://doi.org/10.1038/S41467-020-18794-X.

  37. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013;155:1639–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA. 2016;113:854.

    Article  Google Scholar 

  39. Datta SR, Katsov A, Hu L, Petros A, Fesik SW, Yaffe MB, et al. 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell. 2000;6:41–51.

    Article  CAS  PubMed  Google Scholar 

  40. Bui NLC, Pandey V, Zhu T, Ma L, Basappa, Lobie PE. Bad phosphorylation as a target of inhibition in oncology. Cancer Lett. 2018;415:177–86.

    Article  CAS  PubMed  Google Scholar 

  41. Kim S, Choi JH, Lim HI, Lee SK, Kim WW, Cho S, et al. EGF-induced MMP-9 expression is mediated by the JAK3/ERK pathway, but not by the JAK3/STAT-3 pathway in a SKBR3 breast cancer cell line. Cell Signal. 2009;21:892–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bodaar K, Yamagata N, Barthe A, Landrigan J, Chonghaile TN, Burns M, et al. JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia. 2022;36:1499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nutter FH, Haylor JL, Khwaja A. Inhibiting ERK activation with CI-1040 leads to compensatory upregulation of alternate MAPKs and Plasminogen activator inhibitor-1 following subtotal nephrectomy with no impact on kidney fibrosis. PLoS One 2015;10. https://doi.org/10.1371/JOURNAL.PONE.0137321.

  44. Allen LF, Sebolt-Leopold J, Meyer MB. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol. 2003;30:105–16.

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Zhao W, Akbani R, Liu W, Ju Z, Ling S, et al. Characterization of human cancer cell lines by reverse-phase protein arrays. Cancer Cell. 2017;31:225–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wolf DM, Yau C, Wulfkuhle J, Brown-Swigart L, Gallagher IR, Lee PRE, et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies. Cancer Cell. 2022;40:609–23.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  50. Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 2016;22:1499–509.

    Article  CAS  PubMed  Google Scholar 

  51. Dushyanthen S, Teo ZL, Caramia F, Savas P, Mintoff CP, Virassamy B, et al. Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer. Nat Commun 2017;8. https://doi.org/10.1038/S41467-017-00728-9.

  52. Sastry KSR, Al-Muftah MA, Li P, Al-Kowari MK, Wang E, Ismail Chouchane A, et al. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death Differ. 2014;21:1936–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, et al. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024;9. https://doi.org/10.1038/S41392-024-01851-Y.

  54. Aiello NM, Stanger BZ. Echoes of the embryo: using the developmental biology toolkit to study cancer. Dis Model Mech. 2016;9:105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cai W, Ye Q, She QB. Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail. Oncotarget. 2014;5:6015–27.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martineau Y, Azar R, Müller D, Lasfargues C, El Khawand S, Anesia R, et al. Pancreatic tumours escape from translational control through 4E-BP1 loss. Oncogene. 2014;33:1367–74.

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun 2017;8. https://doi.org/10.1038/S41467-017-02243-3.

  58. Taddei I, Deugnier MA, Faraldo MM, Petit V, Bouvard D, Medina D, et al. Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol. 2008;10:716–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huck L, Pontier SM, Zuo DM, Muller WJ. beta1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression. Proc Natl Acad Sci USA. 2010;107:15559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med. 2003;9:1081–4.

    Article  CAS  PubMed  Google Scholar 

  61. Parodi DA, Greenfield M, Evans C, Chichura A, Alpaugh A, Williams J, et al. Alteration of mammary gland development and gene expression by in utero exposure to Cadmium. Int J Mol Sci. 2017;18. https://doi.org/10.3390/IJMS18091939.

  62. Wei Z, Shaikh ZA. Cadmium stimulates metastasis-associated phenotype in triple-negative breast cancer cells through integrin and β-catenin signaling. Toxicol Appl Pharm. 2017;328:70–80.

    Article  CAS  Google Scholar 

  63. Liang Y, Pi H, Liao L, Tan M, Deng P, Yue Y, et al. Cadmium promotes breast cancer cell proliferation, migration and invasion by inhibiting ACSS2/ATG5-mediated autophagy. Environ Pollut 2021;273. https://doi.org/10.1016/J.ENVPOL.2021.116504.

  64. Coffey DS. Self-organization, complexity and chaos: the new biology for medicine. Nat Med. 1998;4:882–5.

    Article  CAS  PubMed  Google Scholar 

  65. Leth-Larsen R, Lund R, Hansen HV, Laenkholm AV, Tarin D, Jensen ON, et al. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol Cell Proteom. 2009;8:1436–49.

    Article  CAS  Google Scholar 

  66. Harburg GC, Hinck L. Navigating breast cancer: axon guidance molecules as breast cancer tumor suppressors and oncogenes. J Mammary Gland Biol Neoplasia. 2011;16:257–70.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Brantley-Sieders DM, Jiang A, Sarma K, Badu-Nkansah A, Walter DL, Shyr Y, et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS One 2011; 6. https://doi.org/10.1371/JOURNAL.PONE.0024426.

  68. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene. 2000;19:6043–52.

    Article  CAS  PubMed  Google Scholar 

  69. Fang WB, Brantley-Sieders DM, Parker MA, Reith AD, Chen J. A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene. 2005;24:7859–68.

    Article  CAS  PubMed  Google Scholar 

  70. Brantley-Sieders DM, Zhuang G, Hicks D, Wei BF, Hwang Y, Cates JMM, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest. 2008;118:64–78.

    Article  CAS  PubMed  Google Scholar 

  71. Pan M. Overexpression of EphA2 gene in invasive human breast cancer and its association with hormone receptor status. 2005;23:9583.

  72. Mittal V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu Rev Pathol. 2018;13:395–412.

    Article  CAS  PubMed  Google Scholar 

  73. Slaney CY, Möller A, Hertzog PJ, Parker BS. The role of Type I interferons in immunoregulation of breast cancer metastasis to the bone. Oncoimmunology 2013;2. https://doi.org/10.4161/ONCI.22339.

  74. Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18:1224–31.

    Article  CAS  PubMed  Google Scholar 

  75. Siddiqa A, Marciniak R. Targeting the hallmarks of cancer. Cancer Biol Ther. 2008;7:740–1.

    Article  CAS  PubMed  Google Scholar 

  76. VanDyke D, Kyriacopulos P, Yassini B, Wright A, Burkhart E, Jacek S, et al. Nanoparticle Based Combination Treatments for Targeting Multiple Hallmarks of Cancer. Int J Nano Stud Technol 2016;1–18.

  77. Luo Y, Wu Y, Huang H, Yi N, Chen Y. Emerging role of BAD and DAD1 as potential targets and biomarkers in cancer. Oncol Lett 2021;22. https://doi.org/10.3892/OL.2021.13072.

  78. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 2007;26:2527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chattopadhyay A, Chiang CW, Yang E. BAD/BCL-[X(L)] heterodimerization leads to bypass of G0/G1 arrest. Oncogene. 2001;20:4507–18.

    Article  CAS  PubMed  Google Scholar 

  80. Danial NN, Gramm CF, Scorrano L, Zhang C-Y, Krauss S, Ranger AM, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature. 2003;424:952–6.

    Article  CAS  PubMed  Google Scholar 

  81. Giménez-Cassina A, Garcia-Haro L, Choi CS, Osundiji MA, Lane EA, Huang H, et al. Regulation of hepatic energy metabolism and gluconeogenesis by BAD. Cell Metab. 2014;19:272–84.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Danial NN, Walensky LD, Zhang CY, Choi CS, Fisher JK, Molina AJ, et al. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med. 2008;14:144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Githaka JM, Gutiérrez T, Han ZZ, Primeau JO, Muranyi H, Young HS, et al. The non-cytotoxic small molecule NPB does not inhibit BAD phosphorylation and forms colloidal aggregates. Commun Med. (In Press) 2025. https://doi.org/10.1038/s43856-025-00880-0.

  84. Gilmore AP, Valentijn AJ, Wang P, Ranger AM, Bundred N, O’Hare MJ, et al. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor. J Biol Chem. 2002;277:27643–50.

    Article  CAS  PubMed  Google Scholar 

  85. Scheid MP, Schubert KM, Duronio V. Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J Biol Chem. 1999;274:31108–13.

    Article  CAS  PubMed  Google Scholar 

  86. Guo Y, Pan W, Liu S, Shen Z, Xu Y, Hu L. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020;19. https://doi.org/10.3892/ETM.2020.8454.

  87. Acosta-Casique A, Montes-Alvarado JB, Barragán M, Larrauri-Rodríguez KA, Perez-Gonzalez A, Delgado-Magallón A, et al. ERK activation modulates invasiveness and Reactive Oxygen Species (ROS) production in triple negative breast cancer cell lines. Cell Signal 2023;101. https://doi.org/10.1016/J.CELLSIG.2022.110487.

  88. Bartholomeusz C, Gonzalez-Angulo AM, Liu P, Hayashi N, Lluch A, Ferrer-Lozano J, et al. High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients. Oncologist. 2012;17:766–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang Y, Lu Q, Li N, Xu M, Miyamoto T, Liu J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer 2022;8. https://doi.org/10.1038/S41523-022-00402-4.

  90. Gagliardi M, Pitner MK, Park J, Xie X, Saso H, Larson RA, et al. Differential functions of ERK1 and ERK2 in lung metastasis processes in triple-negative breast cancer. Sci Rep 2020;10. https://doi.org/10.1038/S41598-020-65250-3.

  91. Rinehart J, Adjei AA, LoRusso PM, Waterhouse D, Hecht JR, Natale RB, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004;22:4456–62.

    Article  CAS  PubMed  Google Scholar 

  92. Boasberg PD, Redfern CH, Daniels GA, Bodkin D, Garrett CR, Ricart AD. Pilot study of PD-0325901 in previously treated patients with advanced melanoma, breast cancer, and colon cancer. Cancer Chemother Pharm. 2011;68:547–52.

    Article  CAS  Google Scholar 

  93. LoRusso PM, Krishnamurthi SS, Rinehart JJ, Nabell LM, Malburg L, Chapman PB, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res. 2010;16:1924–37.

    Article  CAS  PubMed  Google Scholar 

  94. Cheng Y, Tian H. Current Development Status of MEK Inhibitors. Molecules 2017; 22. https://doi.org/10.3390/MOLECULES22101551.

Download references

Acknowledgements

We are grateful to all Goping lab members for their valuable discussions and contributions. We thank Dr. Kristi Baker for the generous gift of anti-CD8 antibody. Cell Imaging Core Experiments were performed at the University of Alberta Faculty of Medicine & Dentistry Cell Imaging Core, RRID:SCR_019200, which receives financial support from the Faculty of Medicine & Dentistry, the University Hospital Foundation, Striving for Pandemic Preparedness – The Alberta Research Consortium, and Canada Foundation for Innovation (CFI) awards to contributing investigators. The authors acknowledge the dedicated support and expertise provided by the North Campus Animal Services (NCAS) staff and veterinarians. This work was supported by operating grants from the Alberta Cancer Foundation and Canadian Institutes of Health Research to ISG. ISG gratefully acknowledges support as the Lilian McCullough Chair in Breast Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

I.S.G. conceived the study. J.M.G., R.K., N.P., and I.S.G. designed the research. J.M.G., R.K., N.T., J.W., H.M., N.T., L.P., E.P.L., T.P., and R.M. performed the experiments. N.D. provided mouse strains. J.M.G., N.P., P.N.N., and J.W. analyzed the data. I.S.G. directed research. J.M.G. and I.S.G. wrote the paper.

Corresponding authors

Correspondence to John Maringa Githaka or Ing Swie Goping.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All mouse experiments and procedures were performed in accordance with the guidelines and regulations set forth by the Canadian Council on Animal Care and approved by the University of Alberta Health Sciences Animal Care and Use Committee (Protocol# AUP00000386).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Githaka, J.M., Kirschenman, R., Patel, N. et al. Multiple anti-tumor programs are activated by blocking BAD phosphorylation. Oncogene 44, 2530–2546 (2025). https://doi.org/10.1038/s41388-025-03420-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03420-1

Search

Quick links