Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coexistence of P53 and KRAS mutations enhances ERK1/2 signaling by inducing EGR1 expression through mutp53 and c-JUN interaction

Abstract

The ERK1/2 signaling pathway, one of the most frequently dysregulated oncogenic pathways, can be initiated by diverse mutations, including those in RAS, BRAF, and amplifications of ERBB2 (HER2). Co-occurrence of ERK1/2 hyperactivation and TP53 mutations is common in multiple cancer types and correlates with significantly poorer clinical outcomes. However, the direct mechanisms underlying the cooperation between ERK1/2 signaling and mutant p53 remain largely unexplored. Our study demonstrates that oncogenic KRAS activates c-JUN, which facilitates physical interactions with mutant p53, leading to hyperactivation of several pro-metastatic transcriptional networks. Notably, mutant p53 and c-JUN collaboratively upregulate EGR1, a key driver of tumor invasion and metastasis. The combined effects of elevated EGR1 expression, along with signaling pathways activated by KRAS and mutant p53, significantly enhance pro-metastatic traits in cancer cells. These findings provide crucial insights into the co-enrichment of KRAS and p53 mutations and pave the way for novel therapeutic strategies targeting this interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GSEA analysis in the exploration cohort, utilizing datasets GSE65458 (for SUM-149PT and BT-549), GSE68248 (for MDA-MB-231) and GSE291033 (for PANC-1).
Fig. 2: Identification of EGR1 as a target gene of mutant p53 and KRAS.
Fig. 3: Mutant p53 promotes cell migration and pro-invasive via EGR1.
Fig. 4: c-JUN occupies the EGR1 gene promoter in KRAS mutant cells.
Fig. 5: Tp53 colocalizes with c-JUN in cells with coexisting TP53 and KRAS mutations.
Fig. 6: EGR1 expression levels correlate with GOFp53 in PAAD.
Fig. 7: Mutant p53 cooperates with oncogenic KRAS effectors to generate metastatic phenotypes.

Similar content being viewed by others

Data availability

The RNA sequencing data generated from mutant p53 knockdown experiments in this study are available in the GEO Repository under accession numbers GSE65458, GSE68248, and GSE291033. For ChIP-seq data: MDA-MB-231 cell line: p53 and c-JUN data are accessible through GEO (GSE66543, GSE66081). A549 cell line: p53 (ENCFF877LNP) and c-JUN (ENCFF957TUK) data are available via ENCODE. HepG2 cell line: p53 and c-JUN data can be found in ENCODE under accession number ENCFF784KMC (p53) and ENCFF732BEG(c-JUN).

Code availability

The custom code and scripts used for data analysis in this study are available from the corresponding author upon reasonable request. All software packages and publicly available tools utilized in this work are cited in the Methods section, along with their respective version numbers and accessibility information.

References

  1. Maik-Rachline G, Hacohen-Lev-Ran A, Seger R. Nuclear ERK: mechanism of translocation, substrates, and role in cancer. Int J Mol Sci. 2019;20:1194.

  2. Lavoie H, Gagnon J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 2020;21:607–32.

    Article  CAS  PubMed  Google Scholar 

  3. Martinez-Jimenez F, Muinos F, Sentis I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20:555–72.

    Article  CAS  PubMed  Google Scholar 

  4. Prior IA, Hood FE, Hartley JL. The frequency of Ras mutations in cancer. Cancer Res. 2020;80:2969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muzumdar MD, Dorans KJ, Chung KM, Robbins R, Tammela T, Gocheva V, et al. Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nat Commun. 2016;7:12685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129:1287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012;72:2457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170:17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat. 2014;35:672–88.

    Article  CAS  PubMed  Google Scholar 

  10. Chun YS, Passot G, Yamashita S, Nusrat M, Katsonis P, Loree JM, et al. Deleterious effect of RAS and evolutionary high-risk TP53 double mutation in colorectal liver metastases. Ann Surg. 2019;269:917–23.

    Article  PubMed  Google Scholar 

  11. Du L, Kim JJ, Shen J, Chen B, Dai N. KRAS and TP53 mutations in inflammatory bowel disease-associated colorectal cancer: a meta-analysis. Oncotarget. 2017;8:22175–86.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao J, Han Y, Li J, Chai R, Bai C. Prognostic value of KRAS/TP53/PIK3CA in non-small cell lung cancer. Oncol Lett. 2019;17:3233–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Escobar-Hoyos LF, Penson A, Kannan R, Cho H, Pan CH, Singh RK, et al. Altered RNA splicing by mutant p53 activates oncogenic RAS signaling in pancreatic cancer. Cancer Cell. 2020;38:198–211 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim MP, Li X, Deng J, Zhang Y, Dai B, Allton KL, et al. Oncogenic KRAS recruits an expansive transcriptional network through mutant p53 to drive pancreatic cancer metastasis. Cancer Discov. 2021;11:2094–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Silwal-Pandit L, Langerod A, Borresen-Dale AL. TP53 mutations in breast and ovarian cancer. Cold Spring Harb Perspect Med. 2017;7:a026252.

  16. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35:600–4.

    Article  CAS  PubMed  Google Scholar 

  17. DiNatale A, Castelli MS, Nash B, Meucci O, Fatatis A. Regulation of tumor and metastasis initiation by chemokine receptors. J Cancer. 2022;13:3160–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem. 2017;162:145–54.

    Article  CAS  PubMed  Google Scholar 

  19. Samson SC, Khan AM, Mendoza MC. ERK signaling for cell migration and invasion. Front Mol Biosci. 2022;9:998475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yue X, Zhao Y, Xu Y, Zheng M, Feng Z, Hu W. Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J Mol Biol. 2017;429:1595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Muller PA, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192:209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang L, Zheng L, Chng WJ, Ding JL. Comprehensive analysis of ERK1/2 substrates for potential combination immunotherapies. Trends Pharm Sci. 2019;40:897–910.

    Article  CAS  PubMed  Google Scholar 

  23. Li TT, Liu MR, Pei DS. Friend or foe, the role of EGR-1 in cancer. Med Oncol. 2019;37:7.

    Article  PubMed  Google Scholar 

  24. Sun T, Tian H, Feng YG, Zhu YQ, Zhang WQ. Egr-1 promotes cell proliferation and invasion by increasing beta-catenin expression in gastric cancer. Dig Dis Sci. 2013;58:423–30.

    CAS  PubMed  Google Scholar 

  25. Hoffmann E, Ashouri J, Wolter S, Doerrie A, Dittrich-Breiholz O, Schneider H, et al. Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem. 2008;283:12120–8.

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Samuvel DJ, Sundararaj KP, Lopes-Virella MF, Huang Y. IL-6 and high glucose synergistically upregulate MMP-1 expression by U937 mononuclear phagocytes via ERK1/2 and JNK pathways and c-Jun. J Cell Biochem. 2010;110:248–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chakraborty A, Diefenbacher ME, Mylona A, Kassel O, Behrens A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat Commun. 2015;6:6782.

    Article  CAS  PubMed  Google Scholar 

  28. Hu S, Wang M, Ji A, Yang J, Gao R, Li X, et al. Mutant p53 and ELK1 co-drive FRA-1 expression to induce metastasis in breast cancer. FEBS Lett. 2023;597:3087–101.

    Article  CAS  PubMed  Google Scholar 

  29. Adiseshaiah P, Li J, Vaz M, Kalvakolanu DV, Reddy SP. ERK signaling regulates tumor promoter induced c-Jun recruitment at the Fra-1 promoter. Biochem Biophys Res Commun. 2008;371:304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012;26:1268–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 2020;12:674–87.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pfister NT, Prives C. Transcriptional regulation by wild-type and cancer-related mutant forms of p53. Cold Spring Harb Perspect Med. 2017;7:a026054.

  34. Wang B, Guo H, Yu H, Chen Y, Xu H, Zhao G. The role of the transcription factor EGR1 in cancer. Front Oncol. 2021;11:642547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported Science and Technology Fund of Tianjin Municipal Health Commission (NO. TJWJ2022QN098).

Author information

Authors and Affiliations

Authors

Contributions

MXW and ALJ performed the experiments and data analysis. RFG performed data analysis. SKH designed the study and wrote the manuscript. MXW acquired the funding. All authors edited and revised the manuscript and were involved in the final approval of the manuscript.

Corresponding author

Correspondence to Sike Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study did not involve human participants, human tissue, or live vertebrate animals. All analyses were conducted using publicly available datasets and computational modeling techniques. Therefore, ethical approval from our institutional ethics committee and informed consent were not required for this research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Ji, A., Gao, R. et al. Coexistence of P53 and KRAS mutations enhances ERK1/2 signaling by inducing EGR1 expression through mutp53 and c-JUN interaction. Oncogene 44, 3787–3798 (2025). https://doi.org/10.1038/s41388-025-03536-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03536-4

Search

Quick links