Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZDHHC20-mediated S-palmitoylation of KAP1/TRIM28 promotes DNA damage repair

Abstract

S-palmitoylation mediated by the zinc finger aspartate-histidine-histidine-cysteine (ZDHHC) protein acyltransferases (PATs) modulates protein localization, stability, interactions and signal transduction. In this study, we screened the 23 ZDHHC family members and identified ZDHHC20 as one of the major PATs involved in the DNA damage response (DDR). Inhibition of ZDHHC20 expression impaired cellular DNA damage repair capabilities. Meanwhile, data from ZDHHC20 knock-out mice, human tumor cell lines and xenograft tumor models showed that knock-out of ZDHHC20 significantly enhanced radiosensitivity. Using palmitoylation label-free quantitative proteomics, we found that over 600 proteins were palmitoylated in a ZDHHC20-dependent manner. Via the acyl-biotin exchange (ABE) assay, we revealed that KRAB-associated protein 1 (KAP1), also known as tripartite motif-containing protein 28 (Trim28), was palmitoylated at cysteine 232 by ZDHHC20. Notably, ZDHHC20-dependent KAP1 palmitoylation increased the chromatin binding of phosphorylated KAP1, which facilitated chromatin accessibility and subsequent recruitment of the DDR components BRCA1 and 53BP1. Further, we demonstrated that Ataxia-Telangiectasia Mutated (ATM)-dependent phosphorylation of ZDHHC20 at serine 339 increased KAP1 palmitoylation. Taken together, our findings elucidate the role and mechanism of the ATM-ZDHHC20-KAP1 axis in the DDR and provide a novel sensitizing strategy for radiotherapy and chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZDHHC20 is one of the key ZDHHC palmitoyl transferases that is prominently involved in the DDR.
Fig. 2: ZDHHC20 regulates radiosensitivity and DNA damage repair.
Fig. 3: ZDHHC20 promotes the palmitoylation of the chromatin remodeling factor KAP1.
Fig. 4: Depletion of ZDHHC20 weakens the regulation of KAP1 in the DDR.
Fig. 5: KAP1 C232S leads to defects in DNA damage repair in tumor cells.
Fig. 6: DNA damage-induced ATM-dependent phosphorylation of ZDHHC20 at S339 promotes the palmitoylation of KAP1.
Fig. 7: The ZDHHC20 S339A mutation inhibits DNA damage repair and increases the radiosensitivity of tumor cells.
Fig. 8

Similar content being viewed by others

Data availability

All relevant data generated in this study are available within the article and supplementary files.

References

  1. Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer. 2023;23:78–94.

    Article  CAS  PubMed  Google Scholar 

  2. Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol cell Biol. 2017;18:495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019;16:81–104.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.

    Article  CAS  PubMed  Google Scholar 

  5. Nickoloff JA. Toward greater precision in cancer radiotherapy. Cancer Res. 2021;81:3156–7.

    Article  CAS  PubMed  Google Scholar 

  6. Xiao M, Fried JS, Ma J, Su Y, Boohaker RJ, Zeng Q, et al. A disease-relevant mutation of SPOP highlights functional significance of ATM-mediated DNA damage response. Signal Transduct Target Ther. 2021;6:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang C, Tang X, Guo X, Niikura Y, Kitagawa K, Cui K, et al. Aurora-B mediated ATM serine 1403 phosphorylation is required for mitotic ATM activation and the spindle checkpoint. Mol cell. 2011;44:597–608.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boohaker RJ, Cui X, Stackhouse M, Xu B. ATM-mediated Snail Serine 100 phosphorylation regulates cellular radiosensitivity. Radiother Oncol. 2013;108:403–8.

    Article  CAS  PubMed  Google Scholar 

  9. Weitering TJ, Takada S, Weemaes CMR, van Schouwenburg PA, van der Burg M. ATM: translating the DNA damage response to adaptive immunity. Trends Immunol. 2021;42:350–65.

    Article  CAS  PubMed  Google Scholar 

  10. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. 2007;316:1160–6.

  11. Dantuma NP, van Attikum H. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J. 2016;35:6–23.

    Article  CAS  PubMed  Google Scholar 

  12. Yu F, Wei J, Cui X, Yu C, Ni W, Bungert J, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic acids Res. 2021;49:5779–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Z, Liu C, Fan C, Li R, Zhang S, Liu J, et al. E3 ubiquitin ligase DTX2 fosters ferroptosis resistance via suppressing NCOA4-mediated ferritinophagy in non-small cell lung cancer. Drug Resistance Updat. 2024;77:101154.

    Article  CAS  Google Scholar 

  14. Liu Z, Xiao M, Mo Y, Wang H, Han Y, Zhao X, et al. Emerging roles of protein palmitoylation and its modifying enzymes in cancer cell signal transduction and cancer therapy. Int J Biol Sci. 2022;18:3447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Cai J, Zhao X, Ma L, Zeng P, Zhou L, et al. Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Mol Cell. 2023;83:281–97.e10.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang M, Zhou L, Xu Y, Yang M, Xu Y, Komaniecki GP, et al. A STAT3 palmitoylation cycle promotes T(H)17 differentiation and colitis. Nature. 2020;586:434–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu Y, Zheng Y, Coyaud É, Zhang C, Selvabaskaran A, Yu Y, et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing. 2019;366:460–7.

  18. Chen S, Zhu B, Yin C, Liu W, Han C, Chen B, et al. Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature. 2017;549:399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Runkle KB, Kharbanda A, Stypulkowski E, Cao XJ, Wang W, Garcia BA, et al. Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling. Mol Cell. 2016;62:385–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 2019;3:306–17.

    Article  CAS  PubMed  Google Scholar 

  21. Fan X, Sun S, Yang H, Ma H, Zhao C, Niu W, et al. SETD2 palmitoylation mediated by ZDHHC16 in epidermal growth factor receptor-mutated glioblastoma promotes ionizing radiation-induced DNA damage. Int J Radiat Oncol, Biol, Phys. 2022;113:648–60.

    Article  PubMed  Google Scholar 

  22. Sudo H, Tsuji AB, Sugyo A, Imai T, Saga T, Harada YN. A loss of function screen identifies nine new radiation susceptibility genes. Biochem Biophys Res Commun. 2007;364:695–701.

    Article  CAS  PubMed  Google Scholar 

  23. Azizi SA, Delalande C, Lan T, Qiu T, Dickinson BC. Charting the chemical space of acrylamide-based inhibitors of zDHHC20. ACS Med Chem Lett. 2022;13:1648–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. F SM, Abrami L, Bracq L, Panyain N, Mercier V, Kunz B, et al. SARS-CoV-2 hijacks a cell damage response, which induces transcription of a more efficient Spike S-acyltransferase. Nat Commun. 2023;14:7302.

    Article  Google Scholar 

  25. Carreras-Sureda A, Abrami L, Ji-Hee K, Wang WA, Henry C, Frieden M, et al. S-acylation by ZDHHC20 targets ORAI1 channels to lipid rafts for efficient Ca(2+) signaling by Jurkat T cell receptors at the immune synapse. eLife. 2021;10:e72051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kharbanda A, Walter DM, Gudiel AA, Schek N, Feldser DM, Witze ES. Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Sci Signal. 2020;13:eaax2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mo Y, Han Y, Chen Y, Fu C, Li Q, Liu Z, et al. ZDHHC20 mediated S-palmitoylation of fatty acid synthase (FASN) promotes hepatocarcinogenesis. Mol cancer. 2024;23:274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bennardo N, Cheng A, Huang N, Stark JM. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 2008;4:e1000110.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol. 2004;24:9305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell.2004;118:477–91.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao M, Zhang S, Liu Z, Mo Y, Wang H, Zhao X, et al. Dual-functional significance of ATM-mediated phosphorylation of spindle assembly checkpoint component Bub3 in mitosis and the DNA damage response. J Biol Chem. 2022;298:101632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao M, Li X, Su Y, Liu Z, Han Y, Wang S, et al. Kinetochore protein MAD1 participates in the DNA damage response through ataxia-telangiectasia mutated kinase-mediated phosphorylation and enhanced interaction with KU80. Cancer Biol Med. 2020;17:640–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Y, Xiao M, Mo Y, Ma J, Han Y, Li Q, et al. Nuclear porcupine mediates XRCC6/Ku70 S-palmitoylation in the DNA damage response. Exp Hematol Oncol. 2024;13:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol. 2006;8:870–6.

    Article  CAS  PubMed  Google Scholar 

  35. Ma J, Benitez JA, Li J, Miki S, Ponte de Albuquerque C, Galatro T, et al. Inhibition of Nuclear PTEN Tyrosine Phosphorylation Enhances Glioma Radiation Sensitivity through Attenuated DNA Repair. Cancer cell. 2019;36:690–1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ning W, Jiang P, Guo Y, Wang C, Tan X, Zhang W, et al. GPS-Palm: a deep learning-based graphic presentation system for the prediction of S-palmitoylation sites in proteins. Brief Bioinforma. 2021;22:1836–47.

    Article  CAS  Google Scholar 

  37. Czerwińska P, Mazurek S, Wiznerowicz M. The complexity of TRIM28 contribution to cancer. J Biomed Sci. 2017;24:63.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Noon AT, Shibata A, Rief N, Löbrich M, Stewart GS, Jeggo PA, et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol. 2010;12:177–84.

    Article  CAS  PubMed  Google Scholar 

  39. Bacon CW, Challa A, Hyder U, Shukla A, Borkar AN, Bayo J, et al. KAP1 is a chromatin reader that couples steps of RNA polymerase II transcription to sustain oncogenic programs. Mol Cell. 2020;78:1133–51.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang D, Zhou J, Liu X, Lu D, Shen C, Du Y, et al. Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability. Proc Natl Acad Sci USA. 2013;110:5516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol cell. 2013;51:454–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Cheng S, Fleishman JS, Chen J, Tang H, Chen ZS, et al. Targeting anoikis resistance as a strategy for cancer therapy. Drug Resistance Updat. 2024;75:101099.

    Article  CAS  Google Scholar 

  44. Wei M, Huang X, Liao L, Tian Y, Zheng X. SENP1 decreases RNF168 phase separation to promote DNA damage repair and drug resistance in colon cancer. Cancer Res. 2023;83:2908–23.

    Article  CAS  PubMed  Google Scholar 

  45. Lu CT, Huang KY, Su MG, Lee TY, Bretaña NA, Chang WC, et al. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res. 2013;41:D295–305.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu G, Jin L, Sun W, Wang S, Liu N. Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers. Biochimica et Biophysica acta Rev cancer. 2022;1877:188735.

    Article  CAS  Google Scholar 

  47. Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, et al. Post-translational modifications in drug resistance. Drug Resistance updat. 2025;78:101173.

    Article  CAS  Google Scholar 

  48. Ocasio CA, Baggelaar MP, Sipthorp J, Losada de la Lastra A, Tavares M, Volaric J, et al. A palmitoyl transferase chemical-genetic system to map ZDHHC-specific S-acylation. Nat Biotechnol. 2024;42:1548–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bayona-Feliu A, Herrera-Moyano E, Badra-Fajardo N, Galván-Femenía I, Soler-Oliva ME, Aguilera A. The chromatin network helps prevent cancer-associated mutagenesis at transcription-replication conflicts. Nat Commun. 2023;14:6890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature. 2022;601:434–9.

    Article  CAS  PubMed  Google Scholar 

  51. Chakraborty R, Ostriker AC, Xie Y, Dave JM, Gamez-Mendez A, Chatterjee P, et al. Histone Acetyltransferases p300 and CBP Coordinate Distinct Chromatin Remodeling Programs in Vascular Smooth Muscle Plasticity. Circulation. 2022;145:1720–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Torchy MP, Hamiche A, Klaholz BP. Structure and function insights into the NuRD chromatin remodeling complex. Cell Mol Life Sci. 2015;72:2491–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Min JN, Tian Y, Xiao Y, Wu L, Li L, Chang S. The mINO80 chromatin remodeling complex is required for efficient telomere replication and maintenance of genome stability. Cell Res. 2013;23:1396–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee DH, Goodarzi AA, Adelmant GO, Pan Y, Jeggo PA, Marto JA, et al. Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J. 2012;31:2403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fontana GA, Hess D, Reinert JK, Mattarocci S, Falquet B, Klein D, et al. Rif1 S-acylation mediates DNA double-strand break repair at the inner nuclear membrane. Nat Commun. 2019;10:2535.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kuo CY, Li X, Stark JM, Shih HM, Ann DK. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner. Cell Cycle (Georget, Tex). 2016;15:787–98.

    Article  CAS  Google Scholar 

  57. Kuo CY, Li X, Kong XQ, Luo C, Chang CC, Chung Y, et al. An arginine-rich motif of ring finger protein 4 (RNF4) oversees the recruitment and degradation of the phosphorylated and SUMOylated Krüppel-associated box domain-associated protein 1 (KAP1)/TRIM28 protein during genotoxic stress. J Biol Chem. 2014;289:20757–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goodarzi AA, Kurka T, Jeggo PA. KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat Struct Mol Biol. 2011;18:831–9.

    Article  CAS  PubMed  Google Scholar 

  59. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol cell. 2017;66:801–17.

    Article  CAS  PubMed  Google Scholar 

  60. Stokes MP, Rush J, Macneill J, Ren JM, Sprott K, Nardone J, et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA. 2007;104:19855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China [82272754, 82503164, 82003237]; Chongqing University Educational Reform Research Project [2021Y55]; China Postdoctoral Science Foundation [grant number 2024M752392]; The Scientific Research Project of Tianjin Education Commission [grant number 2022KJ220]; The Natural Science Foundation of Shanghai (25ZR1402085); Tianjin Medical University Cancer Institute and Hospital Innovation Fund [grant number B2203]; Tianjin Key Medical Discipline Construction Project [grant number TJYXZDXK-3-004B]. We appreciate Dr. Lei Shi for providing relevant cell lines.

Author information

Authors and Affiliations

Contributions

ZL, HW, and YH performed most of the experiments and wrote the manuscript. YC, YW, SZ, YM, CW, and MX performed experiments and analyzed the data. BX and MX conceived the study and experimental design and revised the manuscript.

Corresponding authors

Correspondence to Mingming Xiao or Bo Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, H., Han, Y. et al. ZDHHC20-mediated S-palmitoylation of KAP1/TRIM28 promotes DNA damage repair. Oncogene 44, 4533–4548 (2025). https://doi.org/10.1038/s41388-025-03604-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03604-9

This article is cited by

Search

Quick links