Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overexpressed PRR11-SKA2-miR301a/454 bidirectional transcription unit essentially and coordinately promotes PI3K-AKT pathway activation and lung cancer progression

Abstract

Gene pairing is a highly conserved and special mode of eukaryotic gene organization, and critically implicated in development and diseases including cancer. We previously found that PRR11 and SKA2 constitute a classic head-to-head gene pair. Here, we further demonstrate that PRR11, SKA2, and its intronic miR301a and miR454 constitute a more exquisite bidirectional transcription unit that are overexpressed in various types of cancers. Functional studies using lung cancer as a model system reveal that co-overexpression of PRR11, SKA2, miR301a and miR454 together remarkably accelerates cell growth, cell cycle progression and cell motility in lung cancer cells, and promotes tumor growth in mouse models in vivo, whereas CRISPRi-mediated repression of the entire transcription unit inhibits these malignant phenotypes. Mechanistically, the four component genes do not display any additive or synergistic effect, but rather compensate for each other for robustly sustained activation of PI3K-AKT pathway, with PRR11 interacting with GRB2, and SKA2 with EGFR. Notably, miR301a and miR454 exert their oncogenic functions at least partially via repressing PTEN translation. Moreover, the transcription unit presents as a prominent prognostic meta-marker for lung cancer. Collectively, these findings demonstrate the essential and coordinated roles of PRR11-SKA2-miR301a/454 bidirectional transcription unit in lung cancer progression, highlighting its potential diagnostic and therapeutic values in cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRR11-SKA2-miR301a/454 gene cluster is a prototypical bidirectional transcription unit coordinately upregulated in pan-cancer.
Fig. 2: PRR11-SKA2-miR301a/454 transcription unit is essential for lung cancer cell growth.
Fig. 3: PRR11 and SKA2 essentially and coordinately promote lung cancer progression.
Fig. 4: PRR11 and SKA2 interact with GRB2 and EGFR to activate PI3K-AKT pathway.
Fig. 5: miR301a and miR454 coordinately promote lung cancer cell growth.
Fig. 6: miR301a and miR454 are essential for lung cancer cell growth.
Fig. 7: miR301a and miR454 activate PI3K-AKT pathway at least via translation repression of PTEN.
Fig. 8: PRR11, SKA2, miR301a and miR454 coordinately promote lung cancer cell growth via PI3K-AKT pathway.
Fig. 9: Prognostic value of PRR11-SKA2-miR301a/454 transcription unit in lung cancer.
Fig. 10: Working model illustrating the essential and coordinated implication of PRR11-SKA2-miR301a/454 transcription unit during lung cancer progression.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Material. The RNA-seq data used in this publication have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE269696.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  2. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398:535–54. https://doi.org/10.1016/s0140-6736(21)00312-3.

    Article  PubMed  Google Scholar 

  3. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46. https://doi.org/10.1158/2159-8290.cd-21-1059.

    Article  CAS  PubMed  Google Scholar 

  4. Califano A, Alvarez MJ. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer. 2017;17:116–30. https://doi.org/10.1038/nrc.2016.124.

    Article  CAS  PubMed  Google Scholar 

  5. Kuenzi BM, Ideker T. A census of pathway maps in cancer systems biology. Nat Rev Cancer. 2020;20:233–46. https://doi.org/10.1038/s41568-020-0240-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Du K, Sun S, Jiang T, Liu T, Zuo X, Xia X, et al. E2F2 promotes lung adenocarcinoma progression through B-Myb- and FOXM1-facilitated core transcription regulatory circuitry. Int J Biol Sci. 2022;18:4151–70. https://doi.org/10.7150/ijbs.72386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zinani OQH, Keseroğlu K, Özbudak EM. Regulatory mechanisms ensuring coordinated expression of functionally related genes. Trends Genet. 2022;38:73–81. https://doi.org/10.1016/j.tig.2021.07.008.

    Article  CAS  PubMed  Google Scholar 

  8. Yang L, Yu J. A comparative analysis of divergently-paired genes (DPGs) among Drosophila and vertebrate genomes. BMC Evol Biol. 2009;9:55. https://doi.org/10.1186/1471-2148-9-55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arnone JT, Robbins-Pianka A, Arace JR, Kass-Gergi S, Mcalear MA. The adjacent positioning of co-regulated gene pairs is widely conserved across eukaryotes. BMC Genomics. 2012;13:546. https://doi.org/10.1186/1471-2164-13-546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suen TC, Tang MS, Goss PE. Model of transcriptional regulation of the BRCA1-NBR2 bi-directional transcriptional unit. Biochim Biophys Acta. 2005;1728:126–34. https://doi.org/10.1016/j.bbaexp.2005.01.014.

    Article  CAS  PubMed  Google Scholar 

  11. Chen PY, Chang WS, Chou RH, Lai YK, Lin SC, Chi CY, et al. Two non-homologous brain diseases-related genes, SERPINI1 and PDCD10, are tightly linked by an asymmetric bidirectional promoter in an evolutionarily conserved manner. BMC Mol Biol. 2007;8:2. https://doi.org/10.1186/1471-2199-8-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Voth H, Oberthuer A, Simon T, Kahlert Y, Berthold F, Fischer M. Co-regulated expression of HAND2 and DEIN by a bidirectional promoter with asymmetrical activity in neuroblastoma. BMC Mol Biol. 2009;10:28. https://doi.org/10.1186/1471-2199-10-28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li D, Lin C, Li N, Du Y, Yang C, Bai Y, et al. PLAGL2 and POFUT1 are regulated by an evolutionarily conserved bidirectional promoter and are collaboratively involved in colorectal cancer by maintaining stemness. EBioMedicine. 2019;45:124–38. https://doi.org/10.1016/j.ebiom.2019.06.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barger CJ, Chee L, Albahrani M, Munoz-Trujillo C, Boghean L, Branick C, et al. Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer. Elife 2021;10. https://doi.org/10.7554/eLife.55070.

  15. Ji Y, Xie M, Lan H, Zhang Y, Long Y, Weng H, et al. PRR11 is a novel gene implicated in cell cycle progression and lung cancer. Int J Biochem Cell Biol. 2013;45:645–56. https://doi.org/10.1016/j.biocel.2012.12.002.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Zhang Y, Zhang C, Weng H, Li Y, Cai W, et al. The gene pair PRR11 and SKA2 shares a NF-Y-regulated bidirectional promoter and contributes to lung cancer development. Biochim Biophys Acta. 2015;1849:1133–44. https://doi.org/10.1016/j.bbagrm.2015.07.002.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Weng H, Zhang Y, Long Y, Li Y, Niu Y, et al. The PRR11-SKA2 Bidirectional Transcription Unit Is Negatively Regulated by p53 through NF-Y in Lung Cancer Cells. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18030534.

  18. Shi W, Gerster K, Alajez NM, Tsang J, Waldron L, Pintilie M, et al. MicroRNA-301 mediates proliferation and invasion in human breast cancer. Cancer Res. 2011;71:2926–37. https://doi.org/10.1158/0008-5472.can-10-3369.

    Article  CAS  PubMed  Google Scholar 

  19. Lu Z, Li Y, Takwi A, Li B, Zhang J, Conklin DJ, et al. miR-301a as an NF-κB activator in pancreatic cancer cells. Embo j. 2011;30:57–67. https://doi.org/10.1038/emboj.2010.296.

    Article  CAS  PubMed  Google Scholar 

  20. Chen Q, Li Y, Zhang C, Wang Y, Bu Y. MicroRNA-301a promotes growth and migration by repressing TGFBR2 in non-small cell lung cancer. Int J Clin Exp Pathol. 2017;10:957–71.

    CAS  Google Scholar 

  21. Li X, Zhong M, Wang J, Wang L, Lin Z, Cao Z, et al. miR-301a promotes lung tumorigenesis by suppressing Runx3. Mol Cancer. 2019;18:99. https://doi.org/10.1186/s12943-019-1024-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma X, Yan F, Deng Q, Li F, Lu Z, Liu M, et al. Modulation of tumorigenesis by the pro-inflammatory microRNA miR-301a in mouse models of lung cancer and colorectal cancer. Cell Discov. 2015;1:15005. https://doi.org/10.1038/celldisc.2015.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren L, Chen H, Song J, Chen X, Lin C, Zhang X, et al. MiR-454-3p-mediated Wnt/β-catenin signaling antagonists suppression promotes breast cancer metastasis. Theranostics. 2019;9:449–65. https://doi.org/10.7150/thno.29055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Quanmei C, Chunxue Z, Chanjuan Y, Youquan B, Yunmei Z. MicroRNA-454 enhances proliferation and migration in non-small cell lung cancer cells. Int J Clin Exp Med. 2019;12:6932–45.

    CAS  Google Scholar 

  25. Jin HY, Gonzalez-Martin A, Miletic AV, Lai M, Knight S, Sabouri-Ghomi M, et al. Transfection of microRNA mimics should be used with caution. Front Genet. 2015;6:340. https://doi.org/10.3389/fgene.2015.00340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goyal A, Myacheva K, Groß M, Klingenberg M, Duran Arqué B, Diederichs S. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res. 2017;45:e12. https://doi.org/10.1093/nar/gkw883.

    Article  CAS  PubMed  Google Scholar 

  27. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20. https://doi.org/10.1038/ng.2764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7. https://doi.org/10.1038/nature11003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arima C, Kajino T, Tamada Y, Imoto S, Shimada Y, Nakatochi M, et al. Lung adenocarcinoma subtypes definable by lung development-related miRNA expression profiles in association with clinicopathologic features. Carcinogenesis. 2014;35:2224–31. https://doi.org/10.1093/carcin/bgu127.

    Article  CAS  PubMed  Google Scholar 

  30. Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, et al. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med. 2013;5:186ra166. https://doi.org/10.1126/scitranslmed.3005723.

    Article  CAS  Google Scholar 

  31. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308. https://doi.org/10.1038/nprot.2013.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fan X, Wang Y, Jiang T, Liu T, Jin Y, Du K, et al. B-Myb accelerates colorectal cancer progression through reciprocal feed-forward transactivation of E2F2. Oncogene. 2021;40:5613–25. https://doi.org/10.1038/s41388-021-01961-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang W, Wang X, Luo C, Pu Q, Yin Q, Xu L, et al. Let-7 microRNA is a critical regulator in controlling the growth and function of silk gland in the silkworm. RNA Biol. 2020;17:703–17. https://doi.org/10.1080/15476286.2020.1726128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–d444. https://doi.org/10.1093/nar/gkab1061.

    Article  CAS  PubMed  Google Scholar 

  35. Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein-protein docking. Nat Protoc. 2020;15:1829–52. https://doi.org/10.1038/s41596-020-0312-x.

    Article  CAS  PubMed  Google Scholar 

  36. Jin Y, Zhu H, Cai W, Fan X, Wang Y, Niu Y, et al. B-Myb is up-regulated and promotes cell growth and motility in non-small cell lung cancer. Int J Mol Sci. 2017;18. https://doi.org/10.3390/ijms18060860.

  37. Zuo X, Meng P, Bao Y, Tao C, Wang Y, Liu X, et al. Cell cycle dysregulation with overexpression of KIF2C/MCAK is a critical event in nasopharyngeal carcinoma. Genes Dis. 2023;10:212–27. https://doi.org/10.1016/j.gendis.2021.05.003.

    Article  CAS  PubMed  Google Scholar 

  38. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–97. https://doi.org/10.1093/nar/gkt1248.

    Article  CAS  PubMed  Google Scholar 

  39. Zarrinpar A, Bhattacharyya RP, Lim WA. The structure and function of proline recognition domains. Sci STKE. 2003;2003:Re8. https://doi.org/10.1126/stke.2003.179.re8.

    Article  PubMed  Google Scholar 

  40. Maignan S, Guilloteau JP, Fromage N, Arnoux B, Becquart J, Ducruix A. Crystal structure of the mammalian Grb2 adaptor. Science. 1995;268:291–3. https://doi.org/10.1126/science.7716522.

    Article  CAS  PubMed  Google Scholar 

  41. Hu DD, Chen HL, Lou LM, Zhang H, Yang GL. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep 2020;40. https://doi.org/10.1042/bsr20194335.

  42. Michalak P. Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics. 2008;91:243–8. https://doi.org/10.1016/j.ygeno.2007.11.002.

    Article  CAS  PubMed  Google Scholar 

  43. Ahmad SS, Samia NSN, Khan AS, Turjya RR, Khan MA. Bidirectional promoters: an enigmatic genome architecture and their roles in cancers. Mol Biol Rep. 2021;48:6637–44. https://doi.org/10.1007/s11033-021-06612-6.

    Article  CAS  PubMed  Google Scholar 

  44. Kilikevicius A, Meister G, Corey DR. Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Res. 2022;50:617–34. https://doi.org/10.1093/nar/gkab1256.

    Article  CAS  PubMed  Google Scholar 

  45. Li Q, Liu J, Meng X, Pang R, Li J. MicroRNA-454 may function as an oncogene via targeting AKT in triple negative breast cancer. J Biol Res. 2017;24:10. https://doi.org/10.1186/s40709-017-0067-x.

    Article  CAS  Google Scholar 

  46. Ma F, Zhang J, Zhong L, Wang L, Liu Y, Wang Y, et al. Upregulated microRNA-301a in breast cancer promotes tumor metastasis by targeting PTEN and activating Wnt/β-catenin signaling. Gene. 2014;535:191–7. https://doi.org/10.1016/j.gene.2013.11.035.

    Article  CAS  PubMed  Google Scholar 

  47. Zhen L, Zhao Q, Lü J, Deng S, Xu Z, Zhang L, et al. miR-301a-PTEN-AKT signaling induces cardiomyocyte proliferation and promotes cardiac repair post-MI. Mol Ther Nucleic Acids. 2020;22:251–62. https://doi.org/10.1016/j.omtn.2020.08.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29:946–60. https://doi.org/10.1038/s41418-022-00988-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kohler R, Engeland K. A-MYB substitutes for B-MYB in activating cell cycle genes and in stimulating proliferation. Nucleic Acids Res. 2024;52:6830–49. https://doi.org/10.1093/nar/gkae370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Castel P, Toska E, Engelman JA, Scaltriti M. The present and future of PI3K inhibitors for cancer therapy. Nat Cancer. 2021;2:587–97. https://doi.org/10.1038/s43018-021-00218-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank all our team members for their help in this work. We gratefully thank Ms. Xia Zhang for her excellent technical assistance at the confocal microscope, and Dr Anchao Song for assistance with statistical analyses.

Funding

National Natural Science Foundation of China (81672301, 82372630, 82403031); Chongqing Municipal Science and Technology Commission (CSTB2023NSCQ-BHX0098); CQMU Program for Youth Innovation in Future Medicine (W0143).

Author information

Authors and Affiliations

Authors

Contributions

TL: Investigation; methodology; visualization; writing - original draft. XZ: Investigation; methodology. SS: Investigation; methodology. KD: Investigation; software. CT: Investigation; software. XX: Investigation. LY: Investigation. CZ: Investigation. ZY: Investigation. YW: Investigation. JY: Investigation; supervision. YB: Conceptualization; funding acquisition; supervision; writing - review & editing.

Corresponding authors

Correspondence to Junhong Ye or Youquan Bu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approva

The animal study was approved by Institutional Animal Care and Use of Chongqing Medical University (IACUC-CQMU) (approval no.: IACUC-CQMU-2023-0471). Ethical approval was not required for the studies on humans because the human cancer datasets used in this study were obtained from public databases of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The cell lines used in this study were all commercially available. The studies were conducted in accordance with the local legislation and institutional requirements.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Zuo, X., Sun, S. et al. Overexpressed PRR11-SKA2-miR301a/454 bidirectional transcription unit essentially and coordinately promotes PI3K-AKT pathway activation and lung cancer progression. Oncogene 45, 68–86 (2026). https://doi.org/10.1038/s41388-025-03607-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03607-6

Search

Quick links