Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HOMER3 drives oral squamous cell carcinoma progression through TRPV6 calcium influx and TUBB3 microtubule stabilization

Abstract

Oral squamous cell carcinoma (OSCC) is a highly aggressive malignancy characterized by extensive extracellular matrix (ECM) remodeling and microtubule dynamics, which drive tumor progression and therapeutic resistance. Here, we identify HOMER3 as a novel and pivotal regulator that integrates ECM stiffness and microtubule dynamics to promote OSCC malignancy. HOMER3 expression follows a distinct gradient, increasing from low levels in normal tissues to elevated levels in oral leukoplakia and highest levels in OSCC, with high expression significantly associated with advanced stages and poor survival. Mechanistically, HOMER3 acts as a scaffold protein forming two distinct functional complexes: HOMER3-CAMKK1-TRPV6, which mediates calcium influx and activates AMPK/AKT/mTOR and B-Raf/MEK/ERK pathways to promote proliferation, invasion, and ECM remodeling; and HOMER3-CAMKK1-TUBB3, which regulates microtubule dynamics and drives resistance to the chemotherapeutic agent docetaxel. Functional studies reveal that HOMER3 overexpression enhances ECM stiffness, type I collagen deposition, and Aβ accumulation in the tumor stroma, leading to tumor growth and aggressiveness, while HOMER3 knockdown reduces ECM stiffness, disrupts collagen composition, and increases sensitivity to docetaxel. These findings establish HOMER3 as a pivotal regulator of OSCC malignancy and chemoresistance, providing novel insights into its role in orchestrating the tumor microenvironment and identifying it as a promising therapeutic target for OSCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HOMER3 is highly expressed in OSCC and correlates with tumor progression and poor prognosis.
Fig. 2: HOMER3 regulates OSCC cell proliferation, clonogenicity, migration, and invasion.
Fig. 3: HOMER3 knockdown alters gene expression profiles and affects extracellular matrix organization and microtubule dynamics.
Fig. 4: HOMER3 regulates OSCC tumor growth in vivo.
Fig. 5: HOMER3 regulates OSCC ECM stiffness in vivo.
Fig. 6: HOMER3 modulates OSCC cell sensitivity to docetaxel by regulating microtubule dynamics.
Fig. 7: HOMER3 regulates calcium signaling, microtubule dynamics, and ECM stiffness through scaffold protein interactions.
Fig. 8: Mechanism diagram of HOMER3 in OSCC progression and chemoresistance.

Similar content being viewed by others

Data availability

Data from the research can be accessed from the corresponding author upon reasonable request.

References

  1. Chai AWY, Lim KP, Cheong SC. Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol. 2020;61:71–83.

    Article  CAS  PubMed  Google Scholar 

  2. Passirani C, Vessières A, La Regina G, Link W, Silvestri R. Modulating undruggable targets to overcome cancer therapy resistance. Drug Resist Updates. 2022;60:100788.

    Article  CAS  Google Scholar 

  3. Zini A, Czerninski R, Sgan-Cohen HD. Oral cancer over four decades: epidemiology, trends, histology, and survival by anatomical sites. J Oral Pathol Med. 2010;39:299–305.

    Article  PubMed  Google Scholar 

  4. Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, et al. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci. 2023;15:44.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chinn SB, Myers JN. Oral cavity carcinoma: current management, controversies, and future directions. J Clin Oncol. 2015;33:3269–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chow LQM. Head and neck cancer. N Engl J Med. 2020;382:60–72.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Prim. 2020;6:92.

    Article  PubMed  Google Scholar 

  8. Chaturvedi P, Singhvi H, Malik A. The role of chronic mucosal trauma in oral cancer: a review of literature. Indian J Med Paediatr Oncol. 2017;38:44.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lazos JP, Piemonte ED, Lanfranchi HE, Brunotto MN. Characterization of chronic mechanical irritation in oral cancer. Int J Dent. 2017;2017:1–7.

    Article  Google Scholar 

  10. Gupta AA, Kheur S, Varadarajan S, Parveen S, Dewan H, Alhazmi YA, et al. Chronic mechanical irritation and oral squamous cell carcinoma: A systematic review and meta-analysis. Bosn J Basic Med Sci. 2021;21:647–58.

    PubMed  PubMed Central  Google Scholar 

  11. Piemonte ED, Lazos JP, Gilligan GM, Panico RL, Werner LC, Yang YH, et al. Chronic mechanical irritation enhances the effect of tobacco and alcohol on the risk of oral squamous cell carcinoma: a case-control study in Argentina. Clin Oral Investig. 2022;26:6317–26.

    Article  PubMed  Google Scholar 

  12. Pérez MA, Raimondi AR, Itoiz ME. An experimental model to demonstrate the carcinogenic action of oral chronic traumatic ulcer. J Oral Pathol Med. 2005;34:17–22.

    Article  PubMed  Google Scholar 

  13. Fujii S, Tajiri Y, Hasegawa K, Matsumoto S, Yoshimoto RU, Wada H, et al. The TRPV4-AKT axis promotes oral squamous cell carcinoma cell proliferation via CaMKII activation. Lab Investig. 2020;100:311–23.

    Article  CAS  PubMed  Google Scholar 

  14. Piccolo S, Panciera T, Contessotto P, Cordenonsi M. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. Nat Cancer. 2023;4:9–26.

    CAS  PubMed  Google Scholar 

  15. Kalli M, Poskus MD, Stylianopoulos T, Zervantonakis IK. Beyond matrix stiffness: targeting force-induced cancer drug resistance. Trends Cancer. 2023;9:937–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li C, Qiu S, Liu X, Guo F, Zhai J, Li Z, et al. Extracellular matrix-derived mechanical force governs breast cancer cell stemness and quiescence transition through integrin-DDR signaling. Signal Transduct Target Ther. 2023;8:247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu B, Liu DA, Guan L, Myint PK, Chin L, Dang H, et al. Stiff matrix induces exosome secretion to promote tumour growth. Nat Cell Biol. 2023;25:415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang J, Li J, Hou Y, Lin Y, Zhao H, Shi Y, et al. Osr2 functions as a biomechanical checkpoint to aggravate CD8+ T cell exhaustion in tumor. Cell. 2024;187:3409–26.e24.

    Article  CAS  PubMed  Google Scholar 

  19. Shiraishi-Yamaguchi Y, Furuichi T. The Homer family proteins. Genome Biol. 2007;8:206.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ishiguro K, Xavier R. Homer-3 regulates activation of serum response element in T cells via its EVH1 domain. Blood. 2004;103:2248–56.

    Article  CAS  PubMed  Google Scholar 

  21. Sun T, Song C, Zhao G, Feng S, Wei J, Zhang L, et al. HOMER3 promotes non-small cell lung cancer growth and metastasis primarily through GABPB1-mediated mitochondrial metabolism. Cell Death Dis. 2023;14:814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Q, He L, Li S, Li F, Deng G, Huang X, et al. HOMER3 facilitates growth factor-mediated β-Catenin tyrosine phosphorylation and activation to promote metastasis in triple negative breast cancer. J Hematol Oncol. 2021;14:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen L, Shan X, Wan X, Zha W, Fan R. HOMER3 promotes liver hepatocellular carcinoma cancer progression by -upregulating EZH2 and mediating miR-361/GPNMB axis. Pathol Res Pract. 2024;254:155150.

    Article  CAS  PubMed  Google Scholar 

  24. Peixoto A, Ferreira D, Azevedo R, Freitas R, Fernandes E, Relvas-Santos M, et al. Glycoproteomics identifies HOMER3 as a potentially targetable biomarker triggered by hypoxia and glucose deprivation in bladder cancer. J Exp Clin Cancer Res. 2021;40:191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen S, Zhang Y, Wang H, Zeng YY, Li Z, Li ML, et al. WW domain-binding protein 2 acts as an oncogene by modulating the activity of the glycolytic enzyme ENO1 in glioma. Cell Death Dis. 2018;9:347.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tosios KI, Kapranos N, Papanicolaou SI. Loss of basement membrane components laminin and type IV collagen parallels the progression of oral epithelial neoplasia. Histopathology. 1998;33:261–8.

    Article  CAS  PubMed  Google Scholar 

  27. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Q, Luo Q, Ju Y, Song G. Role of the mechanical microenvironment in cancer development and progression. Cancer Biol Med. 2020;17:282–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bastianello G, Kidiyoor GR, Lowndes C, Li Q, Bonnal R, Godwin J, et al. Mechanical stress during confined migration causes aberrant mitoses and c-MYC amplification. Proc Natl Acad Sci USA. 2024;121:e2404551121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mancini A, Gentile MT, Pentimalli F, Cortellino S, Grieco M, Giordano A. Multiple aspects of matrix stiffness in cancer progression. Front Oncol. 2024;14:1406644.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010;11:174–83.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. J Exp Clin Cancer Res. 2020;39:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Z, Wang Z, Liu T, Tang J, Liu Y, Gou T, et al. Exploring the role of ITGB6: fibrosis, cancer, and other diseases. Apoptosis. 2024;29:570–85.

    Article  CAS  PubMed  Google Scholar 

  34. Li W, Chi N, Rathnayake RAC, Wang R. Distinctive roles of fibrillar collagen I and collagen III in mediating fibroblast-matrix interaction: a nanoscopic study. Biochem Biophys Res Commun. 2021;560:66–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu Z, Li H, Hou C, Peng Y, Long J, Liu J. Endogenously generated amyloid-β increases stiffness in human neuroblastoma cells. Eur Biophys J. 2017;46:415–24.

    Article  CAS  PubMed  Google Scholar 

  36. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.

    Article  CAS  PubMed  Google Scholar 

  37. Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, et al. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother. 2021;141:111824.

    Article  CAS  PubMed  Google Scholar 

  38. Fonteriz RI, De La Fuente S, Moreno A, Lobatón CD, Montero M, Alvarez J. Monitoring mitochondrial [Ca2+] dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium. 2010;48:61–69.

    Article  CAS  PubMed  Google Scholar 

  39. Gee KR, Brown KA, Chen WNU, Bishop-Stewart J, Gray D, Johnson I. Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium. 2000;27:97–106.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang D, Wang F, Pang Y, Ke X, Zhu S, Zhao E, et al. Down-regulation of CHERP inhibits neuroblastoma cell proliferation and induces apoptosis through ER stress induction. Oncotarget. 2017;8:80956–70.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Keinan N, Pahima H, Ben-Hail D, Shoshan-Barmatz V. The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. Biochim Biophys Acta. 2013;1833:1745–54.

    Article  CAS  PubMed  Google Scholar 

  42. Rosen L. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron. 1994;12:1207–21.

    Article  CAS  PubMed  Google Scholar 

  43. Hwang HY, Shim JS, Kim D, Kwon HJ. Antidepressant drug sertraline modulates AMPK-MTOR signaling-mediated autophagy via targeting mitochondrial VDAC1 protein. Autophagy. 2021;17:2783–99.

    Article  CAS  PubMed  Google Scholar 

  44. Bolanz KA, Hediger MA, Landowski CP. The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther. 2008;7:271–9.

    Article  CAS  PubMed  Google Scholar 

  45. Schmitt JM, Guire ES, Saneyoshi T, Soderling TR. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation. J Neurosci. 2005;25:1281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun X, Zhang Y, Xin S, Jin L, Cao Q, Wang H, et al. NOTCH3 promotes docetaxel resistance of prostate cancer cells through regulating TUBB3 and MAPK signaling pathway. Cancer Sci. 2024;115:412–26.

    Article  CAS  PubMed  Google Scholar 

  47. Sekino Y, Han X, Kawaguchi T, Babasaki T, Goto K, Inoue S, et al. TUBB3 reverses resistance to docetaxel and cabazitaxel in prostate cancer. Int J Mol Sci. 2019;20:3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomas P, Mathew D, Anisha K, Ramasubramanian A, Ramalingam K, Ramani P, et al. A retrospective analysis of the clinicopathological profile of oral squamous cell carcinoma in tobacco and non-tobacco users: highlighting the significance of chronic mechanical irritation. Cureus. 2024;16:e59953.

    PubMed  PubMed Central  Google Scholar 

  49. Piemonte E, Lazos J, Belardinelli P, Secchi D, Brunotto M, Lanfranchi-Tizeira H. Oral cancer associated with chronic mechanical irritation of the oral mucosa. Med Oral Patol Oral Cir Bucal. 2018;23:0–0.

    Article  CAS  Google Scholar 

  50. Hasegawa K, Fujii S, Matsumoto S, Tajiri Y, Kikuchi A, Kiyoshima T. YAP signaling induces PIEZO to promote oral squamous cell carcinoma cell proliferation. J Pathol. 2021;253:80–93.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang Y, Zhang H, Wang J, Liu Y, Luo T, Hua H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol. 2022;15:34.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Miura S, Sato K, Kato-Negishi M, Teshima T, Takeuchi S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun. 2015;6:8871.

    Article  PubMed  Google Scholar 

  53. Li W, Zhu D, Qin S. SIRT7 suppresses the epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis by promoting SMAD4 deacetylation. J Exp Clin Cancer Res. 2018;37:148.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Duran GE, Wang YC, Moisan F, Francisco EB, Sikic BI. Decreased levels of baseline and drug-induced tubulin polymerisation are hallmarks of resistance to taxanes in ovarian cancer cells and are associated with epithelial-to-mesenchymal transition. Br J Cancer. 2017;116:1318–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scherbakov AM, Basharina AA, Sorokin DV, Mikhaevich EI, Mizaeva IE, Mikhaylova AL, et al. Targeting hormone-resistant breast cancer cells with docetaxel: a look inside the resistance. Cancer Drug Resist. 2023;6:103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berkowitz SA, Wolff J. Intrinsic calcium sensitivity of tubulin polymerization. The contributions of temperature, tubulin concentration, and associated proteins. J Biol Chem. 1981;256:11216–23.

    Article  CAS  PubMed  Google Scholar 

  57. Monteith GR, Prevarskaya N, Roberts-Thomson SJ. The calcium–cancer signalling nexus. Nat Rev Cancer. 2017;17:373–80.

    Article  Google Scholar 

  58. He Y, Khan S, Huo Z, Lv D, Zhang X, Liu X, et al. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. J Hematol Oncol. 2020;13:103.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kelm JM, Pandey DS, Malin E, Kansou H, Arora S, Kumar R, et al. PROTAC’ing oncoproteins: targeted protein degradation for cancer therapy. Mol Cancer. 2023;22:62.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mouillet-Richard S, Martin-Lannerée S, Le Corre D, Hirsch TZ, Ghazi A, Sroussi M, et al. A proof of concept for targeting the PrPC - Amyloid β peptide interaction in basal prostate cancer and mesenchymal colon cancer. Oncogene. 2022;41:4397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Al Khashali H, Ray R, Darweesh B, Wozniak C, Haddad B, Goel S, et al. Amyloid beta leads to decreased acetylcholine levels and non-small cell lung cancer cell survival via a mechanism that involves p38 mitogen-activated protein kinase and protein kinase C in a p53-dependent and -independent manner. Int J Mol Sci. 2024;25:5033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang Y, Zhang D, Robinson S, Zheng J. Inhibition of pancreatic cancer cells by different amyloid proteins reveals an inverse relationship between neurodegenerative diseases and cancer. Adv Biol. 2023;7:e2300070.

    Article  Google Scholar 

  63. Kleffman K, Levinson G, Rose IVL, Blumenberg LM, Shadaloey SAA, Dhabaria A, et al. Melanoma-secreted amyloid beta suppresses neuroinflammation and promotes brain metastasis. Cancer Discov. 2022;12:1314–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key Research and Development Program of China (2023YFC2506403 to SYS), the Key Program of National Natural Science Foundation of China (82030085 to SYS), the National Natural Science Foundation of China (82202916 to YLY), and the Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU-ZLCX20212300, SSMU-ZLCX20180500). This work was also funded by Shanghai’s Top Priority Research Center (2022ZZ01017).

Author information

Authors and Affiliations

Authors

Contributions

SYS and YLY conceived the study and designed the experiments. CHX and JZ conducted the experiments and analyzed data. HZ, LC, JCZ, GZY, RRX, JYZ, and CTF conducted data analysis. All authors analyzed and interpreted the data, contributed to the writing of the manuscript, discussed the results and implications, and edited the manuscript at all stages. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yanli Yao or Shuyang Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Approval from the Ethics Committee of the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, was obtained for the human tissue study, and informed consent was provided by all patients involved. All animal experimental procedures were approved by the Animal Care and Use Committee of the Affiliated Ninth People’s Hospital of Shanghai Jiao Tong University School of Medicine.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Zhang, J., Zhang, H. et al. HOMER3 drives oral squamous cell carcinoma progression through TRPV6 calcium influx and TUBB3 microtubule stabilization. Oncogene 45, 278–294 (2026). https://doi.org/10.1038/s41388-025-03611-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03611-w

Search

Quick links