Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of ribosomal gene expression and senescence by a PML-mTOR-RONIN nuclear complex in triple-negative breast cancer

Abstract

Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer that is associated with poor prognosis and a high risk of relapse, with limited treatment options. While the induction of senescence, a state of arrested cell growth, is generally achieved by available anticancer treatments, senescence can adversely promote tumorigenesis through an upheld augmented inflammatory state called senescence-associated secretory phenotype (SASP). Thus, the precise delineation of underlying regulatory mechanisms governing senescence is urgently needed. Herein, we investigated the beneficial anticancer senescence response elicited by silencing the expression of the promyelocytic leukemia protein (PML) in TNBC, where it exerts an oncogenic role. Functional genomics studies implicated the downregulation of a specific set of ribosomal protein (RP) genes tied to poor clinical outcome. Re-introduction of RPL38 or RPL39L alone, but not RPS14, a favorable outcome-associated RP, was sufficient to block the senescence phenotype induced by PML knockdown. RP gene regulation by PML was found to involve the assembly of a previously unrecognized PML-mTOR-RONIN transcriptional complex at their promoters. Furthermore, we show that RONIN levels are elevated in TNBC and that RONIN silencing can recapitulate the senescent phenotype of PML-deficient cells. This work offers new therapeutic insights for TNBC that involve senescence-inducing therapies or senolytics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PML KD alters ribosome biology.
Fig. 2: PML is a transcriptional regulator of ribosomal proteins.
Fig. 3: PML interacts with mTOR at RP promoters.
Fig. 4: RONIN/THAP11 is enriched in TNBC and associates with the PML-mTOR complex.
Fig. 5: RONIN knockdown triggers senescence in TNBC cells.
Fig. 6: RPL38 or RPL39L overexpression mitigates the senescent phenotype induced by PML or RONIN silencing.

Similar content being viewed by others

Data availability

PML and mTOR ChIP-seq data performed in MDA-MB-231 cells, as well as RNA-seq data of shRNA-mediated knockdown of PML in MDA-MB-231 cells, have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are accessible through GEO SuperSeries accession number GSE283109 encompassing SubSeries GSE283106 (shPML RNA-seq), GSE283107 (PML ChIP-seq), and GSE283108 (mTOR ChIP-seq). Gene expression data from the breast cancer METABRIC [63, 64] and TCGA PanCancer atlas cohorts were downloaded from cbioportal (https://www.cbioportal.org) [56, 57] or analyzed with bc-GenExMiner v5.1 (https://bcgenex.ico.unicancer.fr/BC-GEM/). Proteomics data from a breast cancer patient cohort were obtained from CPTAC [59]. Proteomics data of breast cancer cell lines were obtained from (1) CCLE [60] via the Dependency Map (DepMap) portal (https://depmap.org/portal/); (2) Lapek et al. [61]; or (3) Sun et al. [62]. This paper does not report original code. Source data underlying the graphs are presented in Supplementary Table 8. Uncropped immunoblots are shown in Supplementary Fig. S6. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

References

  1. Al-Thoubaity FK. Molecular classification of breast cancer: a retrospective cohort study. Ann Med Surg. 2020;49:44–8.

    Article  Google Scholar 

  2. de Paula B, Kieran R, Koh SSY, Crocamo S, Abdelhay E, Munoz-Espin D. Targeting senescence as a therapeutic opportunity for triple-negative breast cancer. Mol Cancer Ther. 2023;22:583–98.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schmitt CA, Wang B, Demaria M. Senescence and cancer—role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19:619–36.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bousset L, Gil J. Targeting senescence as an anticancer therapy. Mol Oncol. 2022;16:3855–80.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022;22:340–55.

    Article  PubMed  Google Scholar 

  6. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–53.

    Article  PubMed  Google Scholar 

  7. Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol. 2024;25:958–78.

    Article  PubMed  Google Scholar 

  8. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7:165–76.

    Article  PubMed  Google Scholar 

  10. Xiao S, Qin D, Hou X, Tian L, Yu Y, Zhang R, et al. Cellular senescence: a double-edged sword in cancer therapy. Front Oncol. 2023;13:1189015.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, et al. PML nuclear bodies and chromatin dynamics: catch me if you can!. Nucleic Acids Res. 2020;48:11890–912.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic Ras and promotes premature senescence. Genes Dev. 2000;14:2015–27.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, et al. A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18:1350–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tessier S, Martin-Martin N, de The H, Carracedo A, Lallemand-Breitenbach V. Promyelocytic leukemia protein, a protein at the crossroad of oxidative stress and metabolism. Antioxid Redox Signal. 2017;26:432–44.

    Article  PubMed  Google Scholar 

  15. Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, et al. PML is essential for multiple apoptotic pathways. Nat Genet. 1998;20:266–72.

    Article  PubMed  Google Scholar 

  16. Vernier M, Bourdeau V, Gaumont-Leclerc MF, Moiseeva O, Begin V, Saad F, et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 2011;25:41–50.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007;8:1006–16.

    Article  PubMed  Google Scholar 

  18. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst. 2004;96:269–79.

    Article  PubMed  Google Scholar 

  19. Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cardon-Cardo- C, et al. Role of PML in cell growth and the retinoic acid pathway. Science. 1998;279:1547–51.

    Article  PubMed  Google Scholar 

  20. Mazza M, Pelicci PG. Is PML a tumor suppressor?. Front Oncol. 2013;3:174.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carracedo A, Weiss D, Leliaert AK, Bhasin M, de Boer VC, Laurent G, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Investig. 2012;122:3088–100.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453:1072–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu SB, Shen ZF, Guo YJ, Cao LX, Xu Y. PML silencing inhibits cell proliferation and induces DNA damage in cultured ovarian cancer cells. Biomed Rep. 2017;7:29–35.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhou W, Cheng L, Shi Y, Ke SQ, Huang Z, Fang X, et al. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget. 2015;6:37300–15.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martin-Martin N, Piva M, Urosevic J, Aldaz P, Sutherland JD, Fernandez-Ruiz S, et al. Stratification and therapeutic potential of PML in metastatic breast cancer. Nat Commun. 2016;7:12595.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ponente M, Campanini L, Cuttano R, Piunti A, Delledonne GA, Coltella N, et al. PML promotes metastasis of triple-negative breast cancer through transcriptional regulation of HIF1A target genes. JCI Insight. 2017;2:e87380.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Arreal L, Piva M, Fernandez S, Revandkar A, Schaub-Clerigue A, Villanueva J, et al. Targeting PML in triple negative breast cancer elicits growth suppression and senescence. Cell Death Differ. 2020;27:1186–99.

    Article  PubMed  Google Scholar 

  28. Bringold F, Serrano M. Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol. 2000;35:317–29.

    Article  PubMed  Google Scholar 

  29. Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway?. Front Oncol. 2022;12:819128.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tian T, Li X, Zhang J. mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci. 2019;20:755.

  31. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023;22:138.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miricescu D, Totan A, Stanescu S II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci. 2020;22:173.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Popova NV, Jucker M. The role of mTOR signaling as a therapeutic target in cancer. Int J Mol Sci. 2021;22:1743.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Giguère V. Canonical signaling and nuclear activity of mTOR—a teamwork effort to regulate metabolism and cell growth. Febs J. 2018;285:1572–88.

    Article  PubMed  Google Scholar 

  35. Laribee RN, Weisman R. Nuclear functions of TOR: impact on transcription and the epigenome. Genes. 2020;11:641.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther. 2023;8:375.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Simcox J, Lamming DW. The central moTOR of metabolism. Dev Cell. 2022;57:691–706.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV, Blagosklonny MV. Rapamycin decelerates cellular senescence. Cell Cycle. 2009;8:1888–95.

    Article  PubMed  Google Scholar 

  39. Kolesnichenko M, Hong L, Liao R, Vogt PK, Sun P. Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence. Cell Cycle. 2012;11:2391–401.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Leontieva OV, Blagosklonny MV. DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence. Aging. 2010;2:924–35.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Leontieva OV, Blagosklonny MV. Gerosuppression by pan-mTOR inhibitors. Aging. 2016;8:3535–51.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pospelova TV, Leontieva OV, Bykova TV, Zubova SG, Pospelov VA, Blagosklonny MV. Suppression of replicative senescence by rapamycin in rodent embryonic cells. Cell Cycle. 2012;11:2402–7.

    Article  PubMed  Google Scholar 

  43. Xu S, Cai Y, Wei Y. mTOR signaling from cellular senescence to organismal aging. Aging Dis. 2014;5:263–73.

    PubMed  Google Scholar 

  44. Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N. mTOR activity and autophagy in senescent cells, a complex partnership. Int J Mol Sci. 2021;22:8149.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC, et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Investig. 2010;120:681–93.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science. 2011;332:966–70.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049–61.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol. 2015;17:1205–17.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Azizian NG, Sullivan DK, Li Y. mTOR inhibition attenuates chemosensitivity through the induction of chemotherapy resistant persisters. Nat Commun. 2022;13:7047.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vilotti S, Biagioli M, Foti R, Dal Ferro M, Lavina ZS, Collavin L, et al. The PML nuclear bodies-associated protein TTRAP regulates ribosome biogenesis in nucleolar cavities upon proteasome inhibition. Cell Death Differ. 2012;19:488–500.

    Article  PubMed  Google Scholar 

  51. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Khan A, Mathelier A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinform. 2017;18:287.

    Article  Google Scholar 

  56. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  57. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–45.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, et al. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell. 2020;183:1436–56.e31.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nusinow DP, Szpyt J, Ghandi M, Rose CM, McDonald ER 3rd, et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell. 2020;180:387–402.e16.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lapek JD Jr., Greninger P, Morris R, Amzallag A, Pruteanu-Malinici I, Benes CH, et al. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat Biotechnol. 2017;35:983–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sun R, Ge W, Zhu Y, Sayad A, Luna A, Lyu M, et al. Proteomic dynamics of breast cancer cell lines identifies potential therapeutic protein targets. Mol Cell Proteom. 2023;22:100602.

    Article  Google Scholar 

  63. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jochems F, Thijssen B, De Conti G, Jansen R, Pogacar Z, Groot K, et al. The Cancer SENESCopedia: a delineation of cancer cell senescence. Cell Rep. 2021;36:109441.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu Y, Deisenroth C, Zhang Y. RP-MDM2-p53 pathway: linking ribosomal biogenesis and tumor surveillance. Trends Cancer. 2016;2:191–204.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25:304–17.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 2006;442:779–85.

    Article  PubMed  Google Scholar 

  69. Audet-Walsh E, Dufour CR, Yee T, Zouanat FZ, Yan M, Kalloghlian G, et al. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes Dev. 2017;31:1228–42.

  70. Chaveroux C, Eichner LJ, Dufour CR, Shatnawi A, Khoutorsky A, Bourque G, et al. Molecular and genetic crosstalks between mTOR and ERRalpha are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell Metab. 2013;17:586–98.

    Article  PubMed  Google Scholar 

  71. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 2007;450:736–40.

    Article  PubMed  Google Scholar 

  72. Dufour CR, Scholtes C, Yan M, Chen Y, Han L, Li T, et al. The mTOR chromatin-bound interactome in prostate cancer. Cell Rep. 2022;38:110534.

    Article  PubMed  Google Scholar 

  73. Sabogal A, Lyubimov AY, Corn JE, Berger JM, Rio DC. THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves. Nature Struct Mol Biol. 2010;17:117–23.

    Article  Google Scholar 

  74. Sanghavi HM, Mallajosyula SS, Majumdar S. Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region. BMC Struct Biol. 2019;19:4.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fujita J, Freire P, Coarfa C, Benham AL, Gunaratne P, Schneider MD, et al. Ronin governs early heart development by controlling core gene expression programs. Cell Rep. 2017;21:1562–73.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Seifert BA, Dejosez M, Zwaka TP. Ronin influences the DNA damage response in pluripotent stem cells. Stem Cell Res. 2017;23:98–104.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dejosez M, Krumenacker JS, Zitur LJ, Passeri M, Chu LF, Songyang Z, et al. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell. 2008;133:1162–74.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lian WX, Yin RH, Kong XZ, Zhang T, Huang XH, Zheng WW, et al. THAP11, a novel binding protein of PCBP1, negatively regulates CD44 alternative splicing and cell invasion in a human hepatoma cell line. FEBS Lett. 2012;586:1431–8.

    Article  PubMed  Google Scholar 

  79. Nakamura S, Yokota D, Tan L, Nagata Y, Takemura T, Hirano I, et al. Down-regulation of Thanatos-associated protein 11 by BCR-ABL promotes CML cell proliferation through c-Myc expression. Int J Cancer. 2012;130:1046–59.

    Article  PubMed  Google Scholar 

  80. Parker JB, Palchaudhuri S, Yin H, Wei J, Chakravarti D. A transcriptional regulatory role of the THAP11-HCF-1 complex in colon cancer cell function. Mol Cell Biol. 2012;32:1654–70.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang J, Zhang H, Shi H, Wang F, Du J, Wang Y, et al. THAP11 Functions as a tumor suppressor in gastric cancer through regulating c-Myc signaling pathways. Biomed Res Int. 2020;2020:7838924.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lessard F, Igelmann S, Trahan C, Huot G, Saint-Germain E, Mignacca L, et al. Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat Cell Biol. 2018;20:789–99.

    Article  PubMed  Google Scholar 

  83. Li HY, Wang M, Jiang X, Jing Y, Wu Z, He Y, et al. CRISPR screening uncovers nucleolar RPL22 as a heterochromatin destabilizer and senescence driver. Nucleic Acids Res. 2024;52:11481–99.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Artero-Castro A, Kondoh H, Fernandez-Marcos PJ, Serrano M, Ramon y Cajal S, Lleonart ME. Rplp1 bypasses replicative senescence and contributes to transformation. Exp Cell Res. 2009;315:1372–83.

    Article  PubMed  Google Scholar 

  85. Pecoraro A, Pagano M, Russo G, Russo A. Ribosome biogenesis and cancer: overview on ribosomal proteins. Int J Mol Sci. 2021;22:5496.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wool IG. Extraribosomal functions of ribosomal proteins. Trends Biochem Sci. 1996;21:164–5.

    Article  PubMed  Google Scholar 

  87. Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, et al. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther. 2023;8:15.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chern T, Achilleos A, Tong X, Hill MC, Saltzman AB, Reineke LC, et al. Mutations in Hcfc1 and Ronin result in an inborn error of cobalamin metabolism and ribosomopathy. Nat Commun. 2022;13:134.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hsu KS, Kao HY. PML: Regulation and multifaceted function beyond tumor suppression. Cell Biosci. 2018;8:5.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fracassi C, Ugge M, Abdelhalim M, Zapparoli E, Simoni M, Magliulo D, et al. PML modulates epigenetic composition of chromatin to regulate expression of pro-metastatic genes in triple-negative breast cancer. Nucleic Acids Res. 2023;51:11024–39.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the regulation of cellular senescence. Biomolecules. 2020;10:420.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Simoni M, Menegazzi C, Fracassi C, Biffi CC, Genova F, Tenace NP, et al. PML restrains p53 activity and cellular senescence in clear cell renal cell carcinoma. EMBO Mol Med. 2024;16:1324–51.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chen X, Zhang T, Su W, Dou Z, Zhao D, Jin X, et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022;13:974.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Haupt S, di Agostino S, Mizrahi I, Alsheich-Bartok O, Voorhoeve M, Damalas A, et al. Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res. 2009;69:4818–26.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Giguère laboratory for assistance and critical discussions, the McGill Platform for Cellular Perturbation (MPCP), and Mr. Alain Pacis from the Canadian Centre for Computational Genomics (C3G) for help with ChIP-seq analysis. Results from examination of breast cancer mRNA-sequencing data from the TCGA-pan cancer dataset are based upon data generated by the TCGA Research Network (https://www.cancer.gov/tcga). This work was supported by a Foundation grant from the Canadian Institutes of Health Research (CIHR) to VG (FDT-156254), a Terry Fox Research Institute Team Grant (PPG-1091), and an operating grant from the Cancer Research Society (CRS-1052927). YM is supported by a Charlotte & Leo Karassik Fellowship and a FRQS Postdoctoral Fellowship. LH is supported by Canderel and Fond de recherches du Québec – Santé (FRQS) studentships. AA is supported by a CIHR studentship. PH is supported by a J.P. Collip fellowship in medical research from McGill’s Faculty of Medicine and Health Sciences (FMHS). MV was a recipient of a post-doctoral fellowship from CIHR. AR was supported by a Canderel post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M Vernier, V Giguère, and CR Dufour; methodology: M Vernier, Y Medkour; investigation: Y Medkour, CR Dufour, L Han, P Hutton, M Farhat, A Alfonso, A Rambur, M Vernier, and V Giguère; writing—original draft: M Vernier, CR Dufour; Y Medkour; writing—review and editing: V Giguère; study supervision: V Giguère and M Vernier; funding acquisition: V Giguère.

Corresponding authors

Correspondence to Mathieu Vernier or Vincent Giguère.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medkour, Y., Dufour, C.R., Han, L. et al. Regulation of ribosomal gene expression and senescence by a PML-mTOR-RONIN nuclear complex in triple-negative breast cancer. Oncogene 44, 4712–4726 (2025). https://doi.org/10.1038/s41388-025-03623-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03623-6

Search

Quick links