Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prevention of cancer initiation by augmenting MHC-I antigen presentation via EZH2 inhibition

Abstract

Early intervention of precancers is significant for improving cancer outcome. EZH2-mediated epigenetic modification was responsible for the immune escape of cancers; besides, tumor immune evasion is correlated with the impaired MHC-I antigen presentation machinery (APM). Oral potentially malignant disorders (OPMDs), represented by oral leukoplakia (OLK), usually precede head and neck squamous cell carcinoma (HNSCC). EZH2 is correlated with malignant transformation (MT) of OPMDs including OLK, while it remains undetermined that whether EZH2 mediates the initiation of HNSCC by repressing APM. Herein, EZH2 was first reported to negatively correlate with MHC-I and CD8+ GZMB+ T subsets which promote antitumor immunity in OPMDs. In vitro study uncovered that EZH2 triggers H3K27me3 on the promoters of MHC-I associated genes such as HLA-A/B/C, B2M and TAP1. Next, we constructed one hydrogel loaded with GSK126, a specific EZH2 inhibitor, denoted as PPT@GSK126 which is well-tolerated and highly adhesive to mucosa. Preclinical trials demonstrated that topical PPT@GSK126 could significantly prevent the MT of OPMDs and induce robust specific immune killing of dysplastic cells; while individual local αPD-1 therapy was unavailable, PPT@GSK126 synergized with topical αPD-1 therapy to significantly repress the cancerization of OPMDs. As EZH2 is highly expressed in numerous precancers, PPT@GSK126 has broad application prospects for reducing these tumor burdens.

Schematic images presenting the mechanism of action regarding EZH2 in promoting MT of OLK into HNSCC via inhibiting MHC-I associated APM (left panel) and the proposed therapeutic strategy for preventing OLK carcinogenesis (right panel).

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The epithelium-originated EZH2 increases alongside with incremental severity of epithelial dysplasia of OLK.
Fig. 2: EZH2 is associated with the attenuated function of CD8+ T cells within microenvironment of OLK by histone epigenetic modulation.
Fig. 3: EZH2 inhibition or knockdown would not influence the growth potential of OLK but reduce the level of H3K27me3.
Fig. 4: EZH2 inhibition restores the MHC-I APM through transcriptionally upregulating relevant genes.
Fig. 5: PPT@GSK126 hydrogel is biosafe, highly adhesive, and suitable for local slow-releasing of EZH2 inhibitors.
Fig. 6: PPT@GSK126 hydrogel significantly retards the MT of OLK into HNSCC and enhances the efficacy of local immunotherapy.
Fig. 7: PPT@GSK126 hydrogel combined with local ICIs remarkably facilitates the MHC-I APM and triggers robust anti-tumor immunity.

Similar content being viewed by others

Data availability

The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2024), China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-Human: HRA001006) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human.onco.

References

  1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  2. Tan YS, Sansanaphongpricha K, Prince M, Sun D, Wolf GT, Lei YL. Engineering vaccines to reprogram immunity against head and neck cancer. J Dent Res. 2018;97:627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu Y, Liang G, Xu H, Dong W, Dong Z, Qiu Z, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021;33:1221–33.e11.

    Article  CAS  PubMed  Google Scholar 

  4. Ren J, Li N, Pei S, Lian Y, Li L, Peng Y, et al. Histone methyltransferase WHSC1 loss dampens MHC-I antigen presentation pathway to impair IFN-γ-stimulated antitumor immunity. J Clin Investig. 2022;132:e153167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022;82:1660–77.e10.

    Article  CAS  PubMed  Google Scholar 

  6. Bais MV. Impact of epigenetic regulation on head and neck squamous cell carcinoma. J Dent Res. 2019;98:268–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Goldberg EM, Chen X, Xu X, McGuire JT, Leuzzi G, et al. Histone methylation antagonism drives tumor immune evasion in squamous cell carcinomas. Mol Cell. 2022;82:3901–18.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun S, Wu Y, Guo W, Yu F, Kong L, Ren Y, et al. STAT3/HOTAIR signaling axis regulates HNSCC growth in an EZH2-dependent manner. Clin Cancer Res. 2018;24:2665–77.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou L, Mudianto T, Ma X, Riley R, Uppaluri R. Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer. Clin Cancer Res. 2020;26:290–300.

    Article  CAS  PubMed  Google Scholar 

  10. Luo X, Qiu Y, Fitzsimonds ZR, Wang Q, Chen Q, Lei YL. Immune escape of head and neck cancer mediated by the impaired MHC-I antigen presentation pathway. Oncogene. 2024;43:388–94.

    Article  CAS  PubMed  Google Scholar 

  11. Vougiouklakis T, Bao R, Nakamura Y, Saloura V. Protein methyltransferases and demethylases dictate CD8+ T-cell exclusion in squamous cell carcinoma of the head and neck. Oncotarget. 2017;8:112797–808.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Johnson DE, Burtness B, Leemans CR, Lui V, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Prim. 2020;6:92.

    Article  PubMed  Google Scholar 

  13. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  14. Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heath BR, Michmerhuizen NL, Donnelly CR, Sansanaphongpricha K, Sun D, Brenner JC, et al. Head and neck cancer immunotherapy beyond the checkpoint blockade. J Dent Res. 2019;98:1073–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rhodus NL. Oral cancer and precancer: improvjing outcomes. Compend Contin Educ Dent. 2009;30:486–8.

    PubMed  Google Scholar 

  17. Jäwert F, Nyman J, Olsson E, Adok C, Helmersson M, Öhman J. Regular clinical follow-up of oral potentially malignant disorders results in improved survival for patients who develop oral cancer. Oral Oncol. 2021;121:105469.

    Article  PubMed  Google Scholar 

  18. Aguirre-Urizar JM, Lafuente-Ibáñez de Mendoza I, Warnakulasuriya S. Malignant transformation of oral leukoplakia: systematic review and meta-analysis of the last 5 years. Oral Dis. 2021;27:1881–95.

    Article  PubMed  Google Scholar 

  19. Warnakulasuriya S, Ariyawardana A. Malignant transformation of oral leukoplakia: a systematic review of observational studies. J Oral Pathol Med. 2016;45:155–66.

    Article  CAS  PubMed  Google Scholar 

  20. Iocca O, Sollecito TP, Alawi F, Weinstein GS, Newman JG, De Virgilio A, et al. Potentially malignant disorders of the oral cavity and oral dysplasia: a systematic review and meta-analysis of malignant transformation rate by subtype. Head Neck. 2020;42:539–55.

    Article  PubMed  Google Scholar 

  21. Ramos-García P, González-Moles MÁ, Mello FW, Bagan JV, Warnakulasuriya S. Malignant transformation of oral proliferative verrucous leukoplakia: a systematic review and meta-analysis. Oral Dis. 2021;27:1896–907.

    Article  PubMed  Google Scholar 

  22. Chen XJ, Tan YQ, Zhang N, He MJ, Zhou G. Expression of programmed cell death-ligand 1 in oral squamous cell carcinoma and oral leukoplakia is associated with disease progress and CD8+ tumor-infiltrating lymphocytes. Pathol Res Pract. 2019;215:152418.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Q, Dan H, Pan W, Jiang L, Zhou Y, Luo X, et al. Management of oral leukoplakia: a position paper of the Society of Oral Medicine, Chinese Stomatological Association. Oral Surg Oral Med Oral Pathol Oral Radio. 2021;132:32–43.

    Article  Google Scholar 

  24. Dong Y, Wang Z, Mao F, Cai L, Dan H, Jiang L, et al. PD-1 blockade prevents the progression of oral carcinogenesis. Carcinogenesis. 2021;42:891–902.

    Article  CAS  PubMed  Google Scholar 

  25. Hu S, Lu H, Xie W, Wang D, Shan Z, Xing X, et al. TDO2+ myofibroblasts mediate immune suppression in malignant transformation of squamous cell carcinoma. J Clin Investig. 2022;132:e157649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu SB, Wang MY, Shi XZ, Wang Q, Yu M, Zhang W, et al. Influence of PD-1/PD-L1 on immune microenvironment in oral leukoplakia and oral squamous cell carcinoma. Oral Dis. 2023;29:3268–77.

    Article  PubMed  Google Scholar 

  27. Lodi G, Franchini R, Warnakulasuriya S, Varoni EM, Sardella A, Kerr AR, et al. Interventions for treating oral leukoplakia to prevent oral cancer. Cochrane Database Syst Rev. 2016;7:CD001829.

    PubMed  Google Scholar 

  28. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527:249–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chu W, Zhang X, Qi L, Fu Y, Wang P, Zhao W, et al. The EZH2-PHACTR2-AS1-ribosome axis induces genomic instability and promotes growth and metastasis in breast cancer. Cancer Res. 2020;80:2737–50.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Mei Y, Luo C, Huang Q, Wang Z, Lu GM, et al. Single-cell analyses reveal mechanisms of cancer stem cell maintenance and epithelial-mesenchymal transition in recurrent bladder cancer. Clin Cancer Res. 2021;27:6265–78.

    Article  CAS  PubMed  Google Scholar 

  31. Cao W, Younis RH, Li J, Chen H, Xia R, Mao L, et al. EZH2 promotes malignant phenotypes and is a predictor of oral cancer development in patients with oral leukoplakia. Cancer Prev Res (Philos). 2011;4:1816–24.

    Article  CAS  Google Scholar 

  32. Ganesh D, Dafar A, Niklasson J, Sandberg I, Braz-Silva P, Sapkota D, et al. EZH2 Expression correlates with T-cell infiltration in oral leukoplakia and predicts cancer transformation. Anticancer Res. 2023;43:1533–42.

    Article  CAS  PubMed  Google Scholar 

  33. Kunju LP, Cookingham C, Toy KA, Chen W, Sabel MS, Kleer CG. EZH2 and ALDH-1 mark breast epithelium at risk for breast cancer development. Mod Pathol. 2011;24:786–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Behrens C, Solis LM, Lin H, Yuan P, Tang X, Kadara H, et al. EZH2 protein expression associates with the early pathogenesis, tumor progression, and prognosis of non-small cell lung carcinoma. Clin Cancer Res. 2013;19:6556–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bremer S, Conradi LC, Mechie NC, Amanzada A, Mavropoulou E, Kitz J, et al. Enhancer of zeste homolog 2 in colorectal cancer development and progression. Digestion. 2021;102:227–35.

    Article  CAS  PubMed  Google Scholar 

  36. Huang J, Zhang J, Guo Z, Li C, Tan Z, Wang J, et al. Easy or not-the advances of EZH2 in regulating T cell development, differentiation, and activation in antitumor immunity. Front Immunol. 2021;12:741302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morel KL, Sheahan AV, Burkhart DL, Baca SC, Boufaied N, Liu Y, et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat Cancer. 2021;2:444–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yap TA, Winter JN, Giulino-Roth L, Longley J, Lopez J, Michot JM, et al. Phase I study of the novel enhancer of zeste homolog 2 (EZH2) inhibitor GSK2816126 in patients with advanced hematologic and solid tumors. Clin Cancer Res. 2019;25:7331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peng X, Xia X, Xu X, Yang X, Yang B, Zhao P, et al. Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations. Sci Adv. 2021;7:eabe8739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen B, Zhu D, Li Q, Wang C, Cui J, Zheng Z, et al. Mechanically Reinforced and injectable universal adhesive based on a PEI-PAA/Alg dual-network hydrogel designed by topological entanglement and catechol chemistry. ACS Appl Mater Interfaces. 2023;15:59826–37.

    Article  CAS  PubMed  Google Scholar 

  41. Ni P, Ye S, Xiong S, Zhong M, Shan J, Yuan T, et al. A chitosan-optimized polyethyleneimine/polyacrylic acid multifunctional hydrogel for reducing the risk of ulcerative arterial bleeding. J Mater Chem B. 2023;11:5207–22.

    Article  CAS  PubMed  Google Scholar 

  42. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  43. Miranda-Filho A, Bray F. Global patterns and trends in cancers of the lip, tongue and mouth. Oral Oncol. 2020;102:104551.

    Article  PubMed  Google Scholar 

  44. Webber LP, Wagner VP, Curra M, Vargas PA, Meurer L, Carrard VC, et al. Hypoacetylation of acetyl-histone H3 (H3K9ac) as marker of poor prognosis in oral cancer. Histopathology. 2017;71:278–86.

    Article  PubMed  Google Scholar 

  45. Mancuso M, Matassa DS, Conte M, Colella G, Rana G, Fucci L, et al. H3K4 histone methylation in oral squamous cell carcinoma. Acta Biochim Pol. 2009;56:405–10.

    Article  CAS  PubMed  Google Scholar 

  46. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam E, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36:385–401.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, et al. The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 2017;20:854–67.

    Article  CAS  PubMed  Google Scholar 

  48. Mahadevan NR, Knelson EH, Wolff JO, Vajdi A, Saigí M, Campisi M, et al. Intrinsic immunogenicity of small cell lung carcinoma revealed by its cellular plasticity. Cancer Discov. 2021;11:1952–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bowen CM, Duzagac F, Martel-Martel A, Reyes-Uribe L, Zaheer M, Thompson J, et al. Inhibition of histone methyltransferase EZH2 for immune interception of colorectal cancer in Lynch syndrome. JCI Insight. 2025;10:e177545.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Guo W, Wang Y, Yang M, Wang Z, Wang Y, Chaurasia S, et al. LincRNA-immunity landscape analysis identifies EPIC1 as a regulator of tumor immune evasion and immunotherapy resistance. Sci Adv. 2021;7:eabb3555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Edmondson JL, Reed MR, Fil D, Heflin B, McKinnon A, Bauer MA, et al. EZH2 loss during metabolic stress drives restoration of MHC class I machinery in melanoma. iScience. 2025;28:112750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stairiker CJ, Thomas GD, Salek-Ardakani S. EZH2 as a regulator of CD8+ T cell fate and function. Front Immunol. 2020;11:593203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu J, Yang K, Zheng J, Zhao P, Xia J, Sun X, et al. Activation of FXR and inhibition of EZH2 synergistically inhibit colorectal cancer through cooperatively accelerating FXR nuclear location and upregulating CDX2 expression. Cell Death Dis. 2022;13:388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ding T, Zou J, Qi J, Dan H, Tang F, Zhao H, et al. Mucoadhesive nucleoside-based hydrogel delays oral leukoplakia canceration. J Dent Res. 2022;101:921–30.

    Article  CAS  PubMed  Google Scholar 

  55. Hanna GJ, Villa A, Nandi SP, Shi R, ONeill A, Liu M, et al. Nivolumab for patients with high-risk oral leukoplakia: a nonrandomized controlled trial. JAMA Oncol. 2024;10:32–41.

    Article  PubMed  Google Scholar 

  56. Chen Q, Wang C, Chen G, Hu Q, Gu Z. Delivery strategies for immune checkpoint blockade. Adv Health Mater. 2018;7:e1800424.

    Article  Google Scholar 

  57. Han X, Li H, Zhou D, Chen Z, Gu Z. Local and targeted delivery of immune checkpoint blockade therapeutics. Acc Chem Res. 2020;53:2521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to appreciate all patients participating in this study.

Funding

This work is supported by: National Natural Science Foundation of China 82272899(to XL), 82203180 (to YQ), and 82171809 (to LJ). Research Funding from West China School/Hospital of Stomatology Sichuan University No. RCDWJS2022-16 (to XL). Key Research Program of Sichuan Provincial Science and Technology Agency 2023YFS0127 (to XL). Postdoctoral Research Funding of Sichuan University 2022SCU12132 (to XL). Research and Develop Program, West China Hospital of Stomatology, Sichuan University No. RD-02-202204 (to XL). Youth Fund Projects of Sichuan Provincial Science and Technology Agency 2024NSFSC1904(to YQ). The CAMS Innovation Fund for Medical Sciences CIFMS,2019-I2M-5-004 (to QC). Sichuan Science and Technology Program 2024YFFK0083(to LJ).

Author information

Authors and Affiliations

Authors

Contributions

WD, QZ, ZD contributed equally to this work. XL, LJ, and LL contributed equally to this work. Conceptualization: LJ, LL, XL. Methodology: WD, QZ, ZD, QH, HX, JL, CD, YQ. Investigation: WD, YQ, XL, XC, SJ, MH, DP, DY. Visualization: YW, HC, YQ, YJ. Supervision: LJ, LL, XL, LiL, LY, MT, TL, QC, XX. Writing—original draft: WD, QZ, ZD, YQ, XL. Writing—review and editing: XL, LJ, LL, CD.

Corresponding authors

Correspondence to Longyu Li, Lu Jiang or Xiaobo Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All experimental procedures were conducted in accordance with the relevant institutional guidelines and regulations. A total of 27 biopsy specimens from patients diagnosed with oral leukoplakia (OLK) and OLK with malignant transformation at the West China Hospital of Stomatology, Sichuan University, were included in this study. Histopathological evaluation of all specimens was independently performed by two certified pathologists. The study protocol was reviewed and approved by the Institutional Review Board of the West China Hospital of Stomatology, Sichuan University (approval numbers: WCHSIRB-AT-2025-402 and WCHSIRB-D-2025-062). Written informed consent was obtained from all participants prior to their inclusion in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Ding, Z., Zeng, Q. et al. Prevention of cancer initiation by augmenting MHC-I antigen presentation via EZH2 inhibition. Oncogene 44, 4878–4894 (2025). https://doi.org/10.1038/s41388-025-03646-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03646-z

Search

Quick links