Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unveiling EMC6 as a novel pathogenic determinant in hepatocellular carcinoma: orchestration of lipid metabolism through regulation of lipid droplet-associated enzyme HSD17B13

Abstract

The endoplasmic reticulum (ER) membrane protein complex (EMC) is an ER multiprotein complex that affects a wide range of pathophysiological processes. Recently, the function of EMC6, a subunit of EMC, has been attracting attention for its role in cancers. However, research on EMC6 in the context of hepatocellular carcinoma (HCC) remains unknown. Here, we first observed the decreased EMC6 expression in human HCC tissues, and diminished expression level of EMC6 was associated with poor prognosis of HCC patients. In parallel, the knockdown of EMC6 promoted tumor progression both in HCC cell lines and in tumor-cell bearing nude mice. To delineate the in vivo roles of EMC6, we generated a hepatocyte-specific knockout of Emc6 (Emc6f/f;Alb-Cre, named Emc6 LKO) using a floxed Emc6 line. Emc6 LKO mice exhibited progressive liver dysfunction, fibrosis and spontaneous carcinogenesis phenotypes. Significant lipid metabolic disorder in the Emc6 LKO liver was revealed by combined metabolomic and proteomic analysis. Moreover, drastic elevation of 17β-Hydroxysteroid dehydrogenase type 13 (HSD17B13), a lipid droplet-associated enzyme, was identified to be involved in the process of EMC6-induced lipid metabolic disorder and HCC progression. Inhibition of HSD17B13 by a Pharmacological inhibitor BI-3231 effectively mitigated EMC6-driven HCC progression in vitro and in vivo. Taken together, these results unveiled a novel regulatory mechanism of EMC in HCC progression through lipid metabolism and may provide a new biomarker and therapeutic target for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EMC6 expression in HCC tissues and adjacent tissues in multiple cohorts.
Fig. 2: EMC6 knockdown promotes tumor progression in vitro and in vivo.
Fig. 3: Hepatic dysfunction and tumorigenesis in Emc6 LKO mice.
Fig. 4: Metabolic and proteomic changes in Emc6-deficient liver tissues.
Fig. 5: Association of HSD17B13 with EMC6.
Fig. 6: HSD17B13 inhibition suppresses HCC progression.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. Metabolomics data can be found under National Genomics Data Center accession number OMIX010094. Proteomics data can be found under ProteomeXchange accession number PXD067920 (hosting repository: iProX, project ID IPX0013248000).

Code availability

Code used during the study is available from the corresponding authors or first authors by request.

References

  1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14.

    Article  PubMed  Google Scholar 

  2. Wen N, Cai Y, Li F, Ye H, Tang W, Song P, et al. The clinical management of hepatocellular carcinoma worldwide: A concise review and comparison of current guidelines: 2022 update. Biosci Trends. 2022;16:20–30.

    Article  PubMed  Google Scholar 

  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  4. Rumgay H, Ferlay J, de Martel C, Georges D, Ibrahim AS, Zheng R, et al. Global, regional and national burden of primary liver cancer by subtype. Eur J Cancer. 2022;161:108–18.

    Article  PubMed  Google Scholar 

  5. Dhamija E, Paul SB, Kedia S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern. Indian J Med Res. 2019;149:9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogel A, Chan SL, Dawson LA, Kelley RK, Llovet JM, Meyer T, et al. Hepatocellular carcinoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36:491−506.

  7. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

    Article  PubMed  Google Scholar 

  8. Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson B, et al. Annual Report to the Nation on the Status of Cancer, 1975-2014, Featuring Survival. J Natl Cancer Inst. 2017;109: djx030.

  9. Lebeaupin C, Vallee D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69:927–47.

    Article  CAS  PubMed  Google Scholar 

  10. Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, et al. Endoplasmic reticulum stress in liver diseases. Hepatology. 2023;77:619–39.

    Article  PubMed  Google Scholar 

  11. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21:421–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luna-Marco C, Ubink A, Kopsida M, Heindryckx F. Endoplasmic Reticulum Stress and Metabolism in Hepatocellular Carcinoma. Am J Pathol. 2023;193:1377–88.

    Article  CAS  PubMed  Google Scholar 

  13. Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature. 2016;529:326–35.

    Article  CAS  PubMed  Google Scholar 

  14. Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16:732–49.

    Article  PubMed  Google Scholar 

  15. Bai L, You Q, Feng X, Kovach A, Li H. Structure of the ER membrane complex, a transmembrane-domain insertase. Nature. 2020;584:475–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pleiner T, Tomaleri GP, Januszyk K, Inglis AJ, Hazu M, Voorhees RM. Structural basis for membrane insertion by the human ER membrane protein complex. Science. 2020;369:433–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Couto-Lima CA, Machado MCR, Anhezini L, Oliveira MT, Molina R, da Silva RR, et al. EMC1 is required for the sarcoplasmic reticulum and mitochondrial functions in the drosophila muscle. Biomolecules. 2024;14:1258.

  18. Richard M, Boulin T, Robert VJ, Richmond JE, Bessereau JL. Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex. Proc Natl Acad Sci USA. 2013;110:E1055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Satoh T, Ohba A, Liu Z, Inagaki T, Satoh AK dPob/EMC is essential for biosynthesis of rhodopsin and other multi-pass membrane proteins in Drosophila photoreceptors. Elife. 2015;4.

  20. Tang X, Snowball JM, Xu Y, Na CL, Weaver TE, Clair G, et al. EMC3 coordinates surfactant protein and lipid homeostasis required for respiration. J Clin Invest. 2017;127:4314–25.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhu Q, Zhu X, Zhang L. ER membrane complex (EMC): Structure, functions, and roles in diseases. FASEB J. 2024;38:e23539.

    Article  CAS  PubMed  Google Scholar 

  22. Volkmar N, Thezenas ML, Louie SM, Juszkiewicz S, Nomura DK, Hegde RS, et al. The ER membrane protein complex promotes biogenesis of sterol-related enzymes maintaining cholesterol homeostasis. J Cell Sci. 2019;132: jcs223453.

  23. Lahiri S, Chao JT, Tavassoli S, Wong AK, Choudhary V, Young BP, et al. A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol. 2014;12:e1001969.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Janer A, Prudent J, Paupe V, Fahiminiya S, Majewski J, Sgarioto N, et al. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome. EMBO Mol Med. 2016;8:1019–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guna A, Volkmar N, Christianson JC, Hegde RS. The ER membrane protein complex is a transmembrane domain insertase. Science. 2018;359:470–3.

    Article  CAS  PubMed  Google Scholar 

  26. Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science. 2009;323:1693–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen X, Kan S, Hu J, Li M, Lu G, Zhang M, et al. EMC6/TMEM93 suppresses glioblastoma proliferation by modulating autophagy. Cell Death Dis. 2016;7:e2043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Xia Y, Xu C, Lin X, Xue P, Zhu S, et al. ER membrane protein complex subunit 6 (EMC6) is a novel tumor suppressor in gastric cancer. BMB Rep. 2017;50:411–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiao W, Cao RC, Yang WJ, Tan JH, Liu RQ, Kan HP, et al. Roles and clinical significances of ATF6, EMC6, and APAF1 in prognosis of pancreatic cancer. Front Genet. 2021;12:730847.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou X, Xiao B, Jiang M, Rui J. Pan-cancer analysis identifies EMC6 as a potential target for lung adenocarcinoma. iScience. 2024;27:108648.

    Article  CAS  PubMed  Google Scholar 

  31. He W, Wang M, Zhang X, Wang Y, Zhao D, Li W, et al. Estrogen induces LCAT to maintain cholesterol homeostasis and suppress hepatocellular carcinoma development. Cancer Res. 2024;84:2417–31.

    Article  CAS  PubMed  Google Scholar 

  32. Toh MR, Wong EYT, Wong SH, Ng AWT, Loo LH, Chow PK, et al. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology. 2023;164:766–82.

    Article  PubMed  Google Scholar 

  33. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589–604.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology. 2011;140:1071–83.

    Article  CAS  PubMed  Google Scholar 

  35. Li K, Shi W, Song Y, Qin L, Zang C, Mei T, et al. Reprogramming of lipid metabolism in hepatocellular carcinoma resulting in downregulation of phosphatidylcholines used as potential markers for diagnosis and prediction. Expert Rev Mol Diagn. 2023;23:1015–26.

    Article  CAS  PubMed  Google Scholar 

  36. Du A, Wang Z, Huang T, Xue S, Jiang C, Qiu G, et al. Fatty acids in cancer: metabolic functions and potential treatment. MedComm Oncol. 2023;2:e25.

    Article  CAS  Google Scholar 

  37. Chitwood PJ, Juszkiewicz S, Guna A, Shao S, Hegde RS. EMC is required to initiate accurate membrane protein topogenesis. Cell. 2018;175:1507–19 e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Zhao Y, Hu J, Xiao J, Qu L, Wang Z, et al. A novel ER-localized transmembrane protein, EMC6, interacts with RAB5A and regulates cell autophagy. Autophagy. 2013;9:150–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tong L, Zheng X, Wang T, Gu W, Shen T, Yuan W, et al. Inhibition of UBA52 induces autophagy via EMC6 to suppress hepatocellular carcinoma tumorigenesis and progression. J Cell Mol Med. 2024;28:e18164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li R, Wang X, Zhang X, Yu J, Feng J, Lv P, et al. Ad5-EMC6 mediates antitumor activity in gastric cancer cells through the mitochondrial apoptosis pathway. Biochem Biophys Res Commun. 2019;513:663–8.

    Article  CAS  PubMed  Google Scholar 

  41. Hall Z, Chiarugi D, Charidemou E, Leslie J, Scott E, Pellegrinet L, et al. Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma. Hepatology. 2021;73:1028–44.

    Article  CAS  PubMed  Google Scholar 

  42. Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 2021;56:1363–93.

    Article  CAS  PubMed  Google Scholar 

  43. Phoolchund AGS, Khakoo SI. MASLD and the Development of HCC: Pathogenesis and Therapeutic Challenges. Cancers. 2024;16:259.

  44. Peng P, Qin S, Li L, He Z, Li B, Nice EC, et al. Epigenetic remodeling under oxidative stress: Mechanisms driving tumor metastasis. MedComm Oncol. 2024;3:e70000.

    Article  CAS  Google Scholar 

  45. Chen D, Zhang Y, Wang W, Chen H, Ling T, Yang R, et al. Identification and characterization of robust hepatocellular carcinoma prognostic subtypes based on an integrative metabolite-protein interaction network. Adv Sci. 2021;8:e2100311.

    Article  Google Scholar 

  46. Chen H, Cai W, Chu ESH, Tang J, Wong CC, Wong SH, et al. Hepatic cyclooxygenase-2 overexpression induced spontaneous hepatocellular carcinoma formation in mice. Oncogene. 2017;36:4415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang B, Liu J, Lei R, Xue B, Li Y, Tian X, et al. Cold exposure, gut microbiota, and hypertension: a mechanistic study. Sci Total Environ. 2022;833:155199.

    Article  CAS  PubMed  Google Scholar 

  48. Janneh AH, Kassir MF, Atilgan FC, Lee HG, Sheridan M, Oleinik N, et al. Crosstalk between pro-survival sphingolipid metabolism and complement signaling induces inflammasome-mediated tumor metastasis. Cell Rep. 2022;41:111742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med. 2023;55:1110–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bocher V, Chinetti G, Fruchart JC, Staels B. [Role of the peroxisome proliferator-activated receptors (PPARS) in the regulation of lipids and inflammation control]. J Soc Biol. 2002;196:47–52.

  51. Wei X, Zhang J, Tang M, Wang X, Fan N, Peng Y. Fat mass and obesity-associated protein promotes liver steatosis by targeting PPARalpha. Lipids Health Dis. 2022;21:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88.

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Xu K, Zhou A, Xu Z, Wu J, Peng X, et al. Integrative Transcriptomics and proteomics analysis reveals THRSP’s role in lipid metabolism. Genes. 2024;15:1562.

  54. Innes H, Morgan MY, Hampe J, Stickel F, Buch S. The rs72613567:TA polymorphism in HSD17B13 is associated with survival benefit after development of hepatocellular carcinoma. Aliment Pharmacol Ther. 2023;58:623–31.

    Article  CAS  PubMed  Google Scholar 

  55. Abul-Husn NS, Cheng X, Li AH, Xin Y, Schurmann C, Stevis P, et al. A protein-truncating HSD17B13 Variant and Protection from Chronic Liver Disease. N Engl J Med. 2018;378:1096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kogiso T, Ogasawara Y, Horiuchi K, Taniai M, Tokushige K. Analysis of genetic factors associated with fatty liver disease-related hepatocellular carcinoma. Cancer Med. 2023;12:17798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vilar-Gomez E, Pirola CJ, Sookoian S, Wilson LA, Liang T, Chalasani N. The protection conferred by HSD17B13 rs72613567 polymorphism on risk of steatohepatitis and fibrosis may be limited to selected subgroups of patients with NAFLD. Clin Transl Gastroenterol. 2021;12:e00400.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ma Y, Brown PM, Lin DD, Ma J, Feng D, Belyaeva OV, et al. 17-beta hydroxysteroid dehydrogenase 13 deficiency does not protect mice from obesogenic diet injury. Hepatology. 2021;73:1701–16.

    Article  CAS  PubMed  Google Scholar 

  59. Alcober-Boquet L, Kraus N, Huber LS, Vutukuri R, Fuhrmann DC, Stross C, et al. BI-3231, an enzymatic inhibitor of HSD17B13, reduces lipotoxic effects induced by palmitic acid in murine and human hepatocytes. Am J Physiol Cell Physiol. 2024;326:C880–C92.

    Article  PubMed  Google Scholar 

  60. Thamm S, Willwacher MK, Aspnes GE, Bretschneider T, Brown NF, Buschbom-Helmke S, et al. Discovery of a novel potent and selective HSD17B13 inhibitor, BI-3231, a well-characterized chemical probe available for open science. J Med Chem. 2023;66:2832–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stender S, Romeo S. HSD17B13 as a promising therapeutic target against chronic liver disease. Liver Int. 2020;40:756–7.

    Article  PubMed  Google Scholar 

  62. Caddeo A, Romeo S. Precision medicine and nucleotide-based therapeutics to treat steatotic liver disease. Clin Mol Hepatol. 2025;31:S76–S93.

    Article  PubMed  Google Scholar 

  63. Mak LY, Gane E, Schwabe C, Yoon KT, Heo J, Scott R, et al. A phase I/II study of ARO-HSD, an RNA interference therapeutic, for the treatment of non-alcoholic steatohepatitis. J Hepatol. 2023;78:684–92.

    Article  CAS  PubMed  Google Scholar 

  64. Pharmaceuticals R A study to evaluate the efficacy and safety of ALN-HSD in adult participants with non-alcoholic steatohepatitis (NASH) with fibrosis with genetic risk factors. Clinicaltrials.gov. Accessed 13 July 2023. https://classic.clinicaltrials.gov/show/NCT05519475

  65. IAP Ltd. A study of INI-822 in healthy volunteers and participants with non-alcoholic steatohepatitis (NASH) or presumed NASH. Clinicaltrials.gov. Accessed 6 Aug 2023. https://classic.clinicaltrials.gov/show/NCT05945537

  66. AstraZeneca. Knockdown of HSD17B13 mRNA, pharmacokinetics, safety, and tolerability, of AZD7503 in non-alcoholic fatty liver disease. Clinicaltrials.gov. Accessed 15 Nov 2023. https://classic.clinicaltrials.gov/show/NCT05560607

  67. AstraZeneca. A study to assess the safety, tolerability and pharmacokinetics of AZD7503 in healthy participants. Clinicaltrials.gov. Accessed 23 Nov 2023. https://classic.clinicaltrials.gov/show/NCT05143905

  68. Li D, Zhao YG, Li D, Zhao H, Huang J, Miao G, et al. The ER-Localized Protein DFCP1 Modulates ER-Lipid Droplet Contact Formation. Cell Rep. 2019;27:343–58 e5.

    Article  CAS  PubMed  Google Scholar 

  69. Estes RE, Lin B, Khera A, Davis MY. Lipid Metabolism Influence on Neurodegenerative Disease Progression: Is the Vehicle as Important as the Cargo?. Front Mol Neurosci. 2021;14:788695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the patients who agreed to provide their tissue for research purposes.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81970825 to YuZ); the Department of Science and Technology of Sichuan Province (No. 2023ZYD0172 to XZ, No. 2024NSFSC0744 to SZ, and No. 2022JDJQ0062 to YuZ); the Chengdu Science and Technology Program (No. 2024-YF05-01868-SN); the Sichuan Returned Overseas Talent Funding (YuZ and SZ); the Human Resources and Social Security Department of Sichuan Province (2021) and research grant from Jinfeng Laboratory (JFLKYXM202403AZ-101).

Author information

Authors and Affiliations

Authors

Contributions

YuZ, XZ and SZ was responsible for Conceptualization, Funding acquisition, Project administration, Supervision, Writing – review & editing. YunZ, CX and ZJ was responsible for Investigation, Visualization, and Writing – original draft. YL contributed to Methodology. XW, ZW, JC, XY contributed to Investigation. QL contributed to Visualization. CC contributed to Writing – review & editing.

Corresponding authors

Correspondence to Shikai Zhu, Xianjun Zhu or Yu Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xiong, C., Jiang, Z. et al. Unveiling EMC6 as a novel pathogenic determinant in hepatocellular carcinoma: orchestration of lipid metabolism through regulation of lipid droplet-associated enzyme HSD17B13. Oncogene 45, 322–338 (2026). https://doi.org/10.1038/s41388-025-03649-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03649-w

Search

Quick links