Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphorylation of CBX8 by PKD1 suppresses PRC1 activity and promotes cell senescence

Abstract

The Polycomb group (PcG) protein chromobox 8 (CBX8) is the subunit of Polycomb repressive complex 1 (PRC1) and recognizes the trimethylation of histone H3 on Lysine 27 (H3K27me3), and coordinates with PRC2 complex to function as an epigenetic gene silencer. CBX8 plays a key role in cell proliferation, stem cell biology, cell senescence, and cancer development. However, the post-translational modifications of CBX8 remain poorly understood. Here, we report that protein kinase D1 (PKD1) interacts and phosphorylates CBX8 at Thr234 and Ser256 /311 residues. PKD1-mediated CBX8 phosphorylation at Thr234 reduced its expression level by promoting its ubiquitination-mediated degradation, whereas Ser256/311 phosphorylation decreased CBX8 binding to other PRC1 components BMI1 and RING1A. Overall, CBX8 phosphorylation by PKD1 impaired PRC1 complex integrity and activity, mitigated H2AK119ub1 level, caused the upregulation of multiple target genes repressed by CBX8, and decreased CBX8, H2AK119ub1, and H3K27me3 enrichment at INK4A/ARF locus, thereby derepressing p16INK4A and facilitating cellular senescence. Collectively, these results suggest that PKD1-mediated CBX8 phosphorylation at T234 and S256/311 is a key mechanism governing CBX8 function, including cell senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PKD1 associates with CBX8 and phosphorylates CBX8.
Fig. 2: PKD1 phosphorylates CBX8 at Thr234, Ser256 and Ser311 sites.
Fig. 3: CBX8-T234 phosphorylation by PKD1 promotes its degradation via the ubiquitin-proteasome pathway.
Fig. 4: PKD1-mediated CBX8 phosphorylation disrupts PRC1 complex integrity.
Fig. 5: CBX8 phosphorylation by PKD1 suppresses H2AK119ub1 level.
Fig. 6: CBX8 phosphorylation by PKD1 abrogates CBX8-mediated silencing of PRC1 target genes.
Fig. 7: PKD1-mediated CBX8 phosphorylation reduces the binding enrichment of CBX8, H2AK119ub1, and H3K27me3 at the INK4A locus.
Fig. 8: PKD1-mediated CBX8 phosphorylation upregulates p16INK4A expression and promotes cell senescence.

Similar content being viewed by others

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD045225. The website is: http://www.ebi.ac.uk/pride.

References

  1. Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev. 2014;28:99–114. https://doi.org/10.1101/gad.235184.113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. He S, Sharpless NE. Senescence in health and disease. Cell. 2017;169:1000–11. https://doi.org/10.1016/j.cell.2017.05.015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96. https://doi.org/10.1038/nrm3823.

    Article  PubMed  CAS  Google Scholar 

  4. Gil J, Peters G. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 2006;7:667–77. https://doi.org/10.1038/nrm1987.

    Article  PubMed  CAS  Google Scholar 

  5. Blackledge NP, Klose RJ. The molecular principles of gene regulation by Polycomb repressive complexes. Nat Rev Mol Cell Biol. 2021;22:815–33. https://doi.org/10.1038/s41580-021-00401-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Guo Y, Zhao S, Wang GG. Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘readout’, and phase separation-based compaction. Trends Genet. 2021;37:547–65. https://doi.org/10.1016/j.tig.2021.03.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43. https://doi.org/10.1126/science.1076997.

    Article  PubMed  CAS  Google Scholar 

  8. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431:873–8. https://doi.org/10.1038/nature02985.

    Article  PubMed  CAS  Google Scholar 

  9. Cao R, Tsukada Y, Zhang Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell. 2005;20:845–54. https://doi.org/10.1016/j.molcel.2005.12.002.

    Article  PubMed  CAS  Google Scholar 

  10. Barbour H, Daou S, Hendzel M, Affar el B. Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun. 2020;11:5947. https://doi.org/10.1038/s41467-020-19782-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kim JJ, Kingston RE. Context-specific Polycomb mechanisms in development. Nat Rev Genet. 2022;23:680–95. https://doi.org/10.1038/s41576-022-00415-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chan HL, Morey L. Emerging roles for Polycomb-group proteins in stem cells and cancer. Trends Biochem Sci. 2019;44:688–700. https://doi.org/10.1016/j.tibs.2019.04.005.

    Article  PubMed  CAS  Google Scholar 

  13. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature. 1999;397:164–8. https://doi.org/10.1038/16476.

    Article  PubMed  CAS  Google Scholar 

  14. Gil J, Bernard D, Martínez D, Beach D. Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol. 2004;6:67–72. https://doi.org/10.1038/ncb1075.

    Article  PubMed  CAS  Google Scholar 

  15. Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J, et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J. 2007;26:1637–48. https://doi.org/10.1038/sj.emboj.7601618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007;21:525–30. https://doi.org/10.1101/gad.415507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Maertens GN, El Messaoudi-Aubert S, Racek T, Stock JK, Nicholls J, Rodriguez-Niedenführ M, et al. Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS ONE. 2009;4:e6380. https://doi.org/10.1371/journal.pone.0006380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, et al. MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J Biol Chem. 2005;280:5178–87. https://doi.org/10.1074/jbc.M410819200.

    Article  PubMed  CAS  Google Scholar 

  19. Chen S, Bohrer LR, Rai AN, Pan Y, Gan L, Zhou X, et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat Cell Biol. 2010;12:1108–14. https://doi.org/10.1038/ncb2116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kaneko S, Li G, Son J, Xu CF, Margueron R, Neubert TA, et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev. 2010;24:2615–20. https://doi.org/10.1101/gad.1983810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol. 2011;13:87–94. https://doi.org/10.1038/ncb2139.

    Article  PubMed  CAS  Google Scholar 

  22. Wu SC, Zhang Y. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of enhancer of zeste 2 (Ezh2) regulates its stability. J Biol Chem. 2011;286:28511–9. https://doi.org/10.1074/jbc.M111.248377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wan L, Xu K, Wei Y, Zhang J, Han T, Fry C, et al. Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function. Mol Cell. 2018;69:279–91.e5. https://doi.org/10.1016/j.molcel.2017.12.020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Liu Y, Liu F, Yu H, Zhao X, Sashida G, Deblasio A, et al. Akt phosphorylates the transcriptional repressor bmi1 to block its effects on the tumor-suppressing ink4a-arf locus. Sci Signal. 2012;5:ra77. https://doi.org/10.1126/scisignal.2002961.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu HA, Balsbaugh JL, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398–408. https://doi.org/10.1074/jbc.M113.501720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kawaguchi T, Machida S, Kurumizaka H, Tagami H, Nakayama JI. Phosphorylation of CBX2 controls its nucleosome-binding specificity. J Biochem. 2017;162:343–55. https://doi.org/10.1093/jb/mvx045.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013;12:260–71. https://doi.org/10.1021/pr300630k.

    Article  PubMed  CAS  Google Scholar 

  28. Zhan X, Yang J, Mao Z, Yu W. PIM1-catalyzed CBX8 phosphorylation promotes the oncogene-induced senescence of human diploid fibroblast. Biochem Biophys Res Commun. 2018;501:779–85. https://doi.org/10.1016/j.bbrc.2018.05.067.

    Article  PubMed  CAS  Google Scholar 

  29. Kim HJ, Park JW, Kang JY, Seo SB. Negative Regulation of Erythroid Differentiation via the CBX8-TRIM28 Axis. Mol Cells. 2021;44:444–57. https://doi.org/10.14348/molcells.2021.0017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang X, Connelly J, Chao Y, Wang QJ. Multifaceted functions of protein kinase D in pathological processes and human diseases. Biomolecules. 2021;11:483. https://doi.org/10.3390/biom11030483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Fu Y, Rubin CS. Protein kinase D: coupling extracellular stimuli to the regulation of cell physiology. EMBO Rep. 2011;12:785–96. https://doi.org/10.1038/embor.2011.131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Storz P, Döppler H, Toker A. Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol Cell Biol. 2005;25:8520–30. https://doi.org/10.1128/MCB.25.19.8520-8530.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Eiseler T, Döppler H, Yan IK, Kitatani K, Mizuno K, Storz P. Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol. 2009;11:545–56. https://doi.org/10.1038/ncb1861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hausser A, Storz P, Märtens S, Link G, Toker A, Pfizenmaier K. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIbeta at the Golgi complex. Nat Cell Biol. 2005;7:880–6. https://doi.org/10.1038/ncb1299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wakana Y, Campelo F. The PKD-dependent biogenesis of TGN-to-plasma membrane transport carriers. Cells. 2021;10:1618. https://doi.org/10.3390/cells10071618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Haxhinasto SA, Bishop GA. A novel interaction between protein kinase D and TNF receptor-associated factor molecules regulates B cell receptor-CD40 synergy. J Immunol. 2003;171:4655–62. https://doi.org/10.4049/jimmunol.171.9.4655.

    Article  PubMed  CAS  Google Scholar 

  37. Roy A, Ye J, Deng F, Wang QJ. Protein kinase D signaling in cancer: a friend or foe? Biochim Biophys Acta Rev Cancer. 2017;1868:283–94. https://doi.org/10.1016/j.bbcan.2017.06.004.

    Article  PubMed  CAS  Google Scholar 

  38. Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 2004;24:8374–85. https://doi.org/10.1128/MCB.24.19.8374-8385.2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fielitz J, Kim MS, Shelton JM, Qi X, Hill JA, Richardson JA, et al. Requirement of protein kinase D1 for pathological cardiac remodeling. Proc Natl Acad Sci USA. 2008;105:3059–63. https://doi.org/10.1073/pnas.0712307105.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang S, Li X, Parra M, Verdin E, Bassel-Duby R, Olson EN. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc Natl Acad Sci USA. 2008;105:7738–43. https://doi.org/10.1073/pnas.0803044105.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu X, Ha CH, Wong C, Wang W, Hausser A, Pfizenmaier K, et al. Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy. Arterioscler Thromb Vasc Biol. 2007;27:2355–62. https://doi.org/10.1161/ATVBAHA.107.152736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Jensen ED, Gopalakrishnan R, Westendorf JJ. Bone morphogenic protein 2 activates protein kinase D to regulate histone deacetylase 7 localization and repression of Runx2. J Biol Chem. 2009;284:2225–34. https://doi.org/10.1074/jbc.M805630200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang P, Han L, Shen H, Wang P, Lv C, Zhao G, et al. Protein kinase D1 is essential for Ras-induced senescence and tumor suppression by regulating senescence-associated inflammation. Proc Natl Acad Sci USA. 2014;111:7683–8. https://doi.org/10.1073/pnas.1324267111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Su Y, Wang P, Shen H, Sun Z, Xu C, Li G, et al. The protein kinase D1-mediated classical protein secretory pathway regulates the Ras oncogene-induced senescence response. J Cell Sci. 2018;131:jcs207217. https://doi.org/10.1242/jcs.207217.

    Article  PubMed  CAS  Google Scholar 

  45. Badreldin AA, Bagheri L, Zhang B, Larson AN, van Wijnen AJ. Relative mRNA and protein stability of epigenetic regulators in musculoskeletal cell culture models. Gene. 2021;766:145032. https://doi.org/10.1016/j.gene.2020.145032.

    Article  PubMed  CAS  Google Scholar 

  46. van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, et al. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone. 2021;143:115659. https://doi.org/10.1016/j.bone.2020.115659.

    Article  PubMed  CAS  Google Scholar 

  47. Vandamme J, Völkel P, Rosnoblet C, Le Faou P, Angrand PO. Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells. Mol Cell Proteomics. 2011;10:M110.002642. https://doi.org/10.1074/mcp.M110.002642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Tamburri S, Lavarone E, Fernández-Pérez D, Conway E, Zanotti M, Manganaro D, et al. Histone H2AK119 mono-ubiquitination is essential for polycomb-mediated transcriptional repression. Mol Cell. 2020;77:840–56. https://doi.org/10.1016/j.molcel.2019.11.021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Blackledge NP, Fursova NA, Kelley JR, Huseyin MK, Feldmann A, Klose RJ. PRC1 catalytic activity is central to polycomb system function. Mol Cell. 2020;77:857–74. https://doi.org/10.1016/j.molcel.2019.12.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 2014;157:1445–59. https://doi.org/10.1016/j.cell.2014.05.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rose NR, King HW, Blackledge NP, Fursova NA, Ember KJ, Fischer R, et al. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes. eLife. 2016;5:e18591. https://doi.org/10.7554/eLife.18591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (31871382 and 32070733) and from the Ministry of Science and Technology of the People’s Republic of China (2018YFC2000102).

Author information

Authors and Affiliations

Authors

Contributions

JC conceived the study. JC, ZQF, YYS, and DDL designed the experiments. ZQF performed most of the experiments; YYS conducted Figs. 1A–C, S1, 2C, S2H and S7A, B, D; DDL performed Fig. 1D, F, SILAC experiment, and Fig. 2E, F; FXH performed RNA-seq experiment; RDQ conducted AlphaFold3 prediction. GDL provided resources. ZQF analyzed most of the data and prepared figures. JC, ZQF, and YYS wrote the manuscript.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Liu, D., Su, Y. et al. Phosphorylation of CBX8 by PKD1 suppresses PRC1 activity and promotes cell senescence. Oncogene 45, 398–413 (2026). https://doi.org/10.1038/s41388-025-03657-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03657-w

Search

Quick links