This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 14 print issues and online access
$259.00 per year
only $18.50 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Data availability
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Patel, R. M., Ferguson, J., McElroy, S. J., Khashu, M. & Caplan, M. S. Defining necrotizing enterocolitis: current difficulties and future opportunities. Pediatr. Res. 88, 10–15 (2020).
Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31 (2017).
Hodzic, Z., Bolock, A. M. & Good, M. The role of mucosal immunity in the pathogenesis of necrotizing enterocolitis. Front. pediatrics 5, 40 (2017).
Duess, J. W. et al. Necrotizing enterocolitis, gut microbes, and sepsis. Gut microbes 15, 2221470 (2023).
Hackam, D. J. & Sodhi, C. P. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis. Cell. Mol. Gastroenterol. Hepatol. 6, 229–238.e221 (2018).
Han, S. M. et al. Trends in incidence and outcomes of necrotizing enterocolitis over the last 12 years: a multicenter cohort analysis. J. Pediatr. Surg. 55, 998–1001 (2020).
Moss, R. L. et al. Clinical parameters do not adequately predict outcome in necrotizing enterocolitis: a multi-institutional study. J. Perinatol. : Off. J. Calif. Perinat. Assoc. 28, 665–674 (2008).
Bell, M. J. et al. Neonatal necrotizing enterocolitis. therapeutic decisions based upon clinical staging. Ann. Surg. 187, 1–7 (1978).
Lueschow, S. R., Boly, T. J., Jasper, E., Patel, R. M. & McElroy, S. J. A critical evaluation of current definitions of necrotizing enterocolitis. Pediatr. Res. 91, 590–597 (2022).
Zozaya, C. et al. Neurodevelopmental and growth outcomes of extremely preterm infants with necrotizing enterocolitis or spontaneous intestinal perforation. J. Pediatr. Surg. 56, 309–316 (2021).
Amin, S. C., Pappas, C., Iyengar, H. & Maheshwari, A. Short bowel syndrome in the Nicu. Clin. Perinatol. 40, 53–68 (2013).
Jones, I. H. & Hall, N. J. Contemporary outcomes for infants with necrotizing enterocolitis-a systematic review. J. pediatrics 220, 86–92.e83 (2020).
Goldstein, G. P. & Sylvester, K. G. Biomarker discovery and utility in necrotizing enterocolitis. Clin. Perinatol. 46, 1–17 (2019).
Waddington, C. H. The Epigenotype. 1942. Int J. Epidemiol. 41, 10–13 (2012).
Turner, B. M. Epigenetic responses to environmental change and their evolutionary implications. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3403–3418 (2009).
Marchese, F. P. & Huarte, M. Long non-coding Rnas and chromatin modifiers: their place in the epigenetic code. Epigenetics 9, 21–26 (2014).
Kellermayer, R. Epigenetics and the developmental origins of inflammatory bowel diseases. Can. J. Gastroenterol. 26, 909–915 (2012).
Han, M., Jia, L., Lv, W., Wang, L. & Cui, W. Epigenetic enzyme mutations: role in tumorigenesis and molecular inhibitors. Front Oncol. 9, 194 (2019).
Tompkins, J. D. et al. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc. Natl Acad. Sci. USA 109, 12544–12549 (2012).
Chan, T. A. & Baylin, S. B. Epigenetic biomarkers. Curr. Top. Microbiol Immunol. 355, 189–216 (2012).
Gunasekara, C. J. et al. Systemic interindividual epigenetic variation in humans is associated with transposable elements and under strong genetic control. Genome Biol. 24, 2 (2023).
Kellermayer, R. Challenges for epigenetic research in inflammatory bowel diseases. Epigenomics 9, 527–538 (2017).
Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet 6, 597–610 (2005).
Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).
Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).
Bardhan, K. & Liu, K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel) 5, 676–713 (2013).
Karatzas, P. S., Gazouli, M., Safioleas, M. & Mantzaris, G. J. DNA methylation changes in inflammatory bowel disease. Ann. Gastroenterol. 27, 125–132 (2014).
Law, C. M., Barker, D. J., Osmond, C., Fall, C. H. & Simmonds, S. J. Early growth and abdominal fatness in adult life. J. Epidemiol. Community Health 46, 184–186 (1992).
Ding, Y.-X. & Cui, H. Integrated analysis of genome-wide DNA methylation and gene expression data provide a regulatory network in intrauterine growth restriction. Life Sci. 179, 60–65 (2017).
Doan, T. N. A., Akison, L. K. & Bianco-Miotto, T. Epigenetic mechanisms responsible for the transgenerational inheritance of intrauterine growth restriction phenotypes. Front Endocrinol. (Lausanne) 13, 838737 (2022).
Good, M. et al. Neonatal necrotizing enterocolitis-associated DNA methylation signatures in the colon are evident in stool samples of affected individuals. Epigenomics 13, 829–844 (2021).
Everson, T. M. et al. Serious neonatal morbidities are associated with differences in DNA methylation among very preterm infants. Clin. Epigenetics 12, 151 (2020).
Cho, H. Y. et al. Prospective epigenome and transcriptome analyses of cord and peripheral blood from preterm infants at risk of bronchopulmonary dysplasia. Sci. Rep. 13, 12262 (2023).
Bulka, C. M. et al. Placental Cpg methylation of inflammation, angiogenic, and neurotrophic genes and retinopathy of prematurity. Investigative Ophthalmol. Vis. Sci. 60, 2888–2894 (2019).
Everson, T. M. et al. Epigenome-wide analysis identifies genes and pathways linked to neurobehavioral variation in preterm infants. Sci. Rep. 9, 6322 (2019).
Hodyl, N. A., Roberts, C. T. & Bianco-Miotto, T. Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes. Genes 7 (2016).
LaSalle, J. M. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol. psychiatry 28, 1890–1901 (2023).
Bahado-Singh, R. O. et al. Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Res. 1724, 146457 (2019).
Gao, L. et al. Association between Axl promoter methylation and lung function growth during adolescence. Epigenetics 13, 1027–1038 (2018).
den Dekker, H. T. et al. Newborn DNA-Methylation, Childhood Lung Function, and the Risks of Asthma and Copd across the Life Course. Eur Resp J. 53 (2019).
Reese, S. E. et al. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J. allergy Clin. Immunol. 143, 2062–2074 (2019).
Radhakrishna, U. et al. Newborn blood DNA epigenetic variations and signaling pathway genes associated with tetralogy of fallot (Tof). PloS one 13, e0203893 (2018).
Gagne-Ouellet, V. et al. Mediation analysis supports a causal relationship between maternal hyperglycemia and placental dna methylation variations at the leptin gene locus and cord blood leptin levels. Int. J. Mol. Sci. 21 (2020).
Guay, S.-P. et al. DNA Methylation at Lrp1 gene locus mediates the association between maternal total cholesterol changes in pregnancy and cord blood leptin levels. J. Dev. Orig. Health Dis. 11, 369–378 (2020).
Schaible, T. D., Harris, R. A., Dowd, S. E., Smith, C. W. & Kellermayer, R. Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum. Mol. Genet. 20, 1687–1696 (2011).
Mir, S. A. et al. Prenatal methyl-donor supplementation augments colitis in young adult mice. PLoS ONE 8, e73162 (2013).
Krishna, M. et al. Maternal lactobacillus reuteri supplementation shifts the intestinal microbiome in mice and provides protection from experimental colitis in female offspring. FASEB Bioadv 4, 109–120 (2022).
Simon, D. A. et al. Developmental windows of environmental vulnerability for inflammatory bowel disease. J. Pediatr. Clin. Pr. 11, 200104 (2024).
Pepke, M. L., Hansen, S. B. & Limborg, M. T. Unraveling Host Regulation of Gut Microbiota through the Epigenome-Microbiome Axis. Trends in microbiology (2024).
Li, Z. et al. Effects of metabolites derived from gut microbiota and hosts on pathogens. Front Cell Infect. Microbiol 8, 314 (2018).
Cortese, R., Lu, L., Yu, Y., Ruden, D. & Claud, E. C. Epigenome-microbiome crosstalk: a potential new paradigm influencing neonatal susceptibility to disease. Epigenetics 11, 205–215 (2016).
Fofanova, T. Y., Petrosino, J. F. & Kellermayer, R. Microbiome-Epigenome Interactions and the Environmental Origins of Inflammatory Bowel Diseases. J. Pediatr. Gastroenterol. Nutr. 62, 208–219 (2016).
Zou, P. et al. Identification of risk factors for necrotizing enterocolitis in twins: a case-control matching analysis of over ten-years’ experience. BMC Pediatr. 24, 744 (2024).
Hourigan, S. K. et al. The microbiome in necrotizing enterocolitis: a case report in twins and minireview. Clin. Ther. 38, 747–753 (2016).
Hall, N. G. et al. Epigenetic Changes Associated with Severe Necrosis and Survival in Preterm Infants with Surgical Necrotizing Enterocolitis. Pediatric research (2025).
Good, M. et al. Global hypermethylation of intestinal epithelial cells is a hallmark feature of neonatal surgical necrotizing enterocolitis. Clin. epigenetics 12, 190 (2020).
Good, M. et al. Selective hypermethylation is evident in small intestine samples from infants with necrotizing enterocolitis. Clin. epigenetics 14, 49 (2022).
Klerk, D. H. et al. DNA Methylation of Tlr4, Vegfa, and Defa5 Is Associated with Necrotizing Enterocolitis in Preterm Infants. Front. pediatrics 9, 630817 (2021).
Klerk, D. H. et al. Hypermethylation of Ctdspl2 Prior to Necrotizing Enterocolitis Onset. Epigenomics 15, 479–486 (2023).
Winans, S., Flynn, A., Malhotra, S., Balagopal, V. & Beemon, K. L. Integration of Alv into Ctdspl and Ctdspl2 Genes in B-cell lymphomas promotes cell immortalization, migration and survival. Oncotarget 8, 57302–57315 (2017).
Xiao, Y., Chen, Y., Peng, A. & Dong, J. The Phosphatase Ctdspl2 Is Phosphorylated in Mitosis and a Target for Restraining Tumor Growth and Motility in Pancreatic Cancer. Cancer Lett. 526, 53–65 (2022).
Kellermayer, R. Genetic Drift. Physiologic noise obscures genotype-phenotype correlations. Am. J. Med Genet A 143a, 1306–1307 (2007).
Philip, A., Krishna, M. & Kellermayer, R. Stochasticity driven limitations for counseling in autoimmune gastrointestinal disease. J. Pediatr. Gastroenterol. Nutr. 77, 695–697 (2023).
Funding
Dr. Mohan Pammi’s effort is partly supported by funding from NIH (R01HD112886). R.K. was supported by the Gutsy Kids Fund, graciously maintained by Brock Wagner, the Klaasmeyers, the Frugonis, and other generous donor families.
Author information
Authors and Affiliations
Contributions
MP wrote the first draft of the manuscript and RK provided critical intellectual input. Both authors approved the final version of the manuscript to be published.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pammi, M., Kellermayer, R. Decoding NEC: epigenetic biomarkers for risk stratification and prognosis. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04620-x
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41390-025-04620-x