Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

STEAP1-targeted strategies in advanced prostate cancer: a review on therapeutic and diagnostic implications

Subjects

Abstract

Background/Objectives

Six transmembrane epithelial antigen of prostate 1 (STEAP1), a cell surface protein, is highly expressed in prostate cancer and is known to be associated with disease progression and poor prognosis. Based on its specificity for prostate cancer, significant progress has been made over the past decade to capitalize on STEAP1 as a diagnostic and treatment target, and its potential future role in prostate cancer care is of considerable interest.

Subjects/Methods

This review evaluates the current and emerging strategies targeting STEAP1, integrating findings from preclinical studies and clinical trials.

Results

This review discusses STEAP1-based diagnostics, including molecular imaging (89Zr-DFO-MSTP2109A) and liquid biopsy methods, as well as therapeutics, such as STEAP1 antibodies, antibody-drug conjugates (DSPT3086S, ADRX-0405, ABBV-969, and DXC008), chimeric antigen receptor T-cell therapy (STEAP1 CAR-T), bispecific T-cell engagers (Xaluritamig/AMG 509, BC261), and cancer vaccines.

Conclusions

STEAP1 represents a promising diagnostic and therapeutic target in prostate cancer, and its potential role in shaping future management of the disease warrants continued investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STEAP1 protein structure and function.

References

  1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

    PubMed  Google Scholar 

  2. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer. Version 2.2026. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed 23 Sep 2025).

  3. Hubert RS, Vivanco I, Chen E, Rastegar S, Leong K, Mitchell SC, et al. STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA. 1999;96:14523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gomes IM, Arinto P, Lopes C, Santos CR, Maia CJ. STEAP1 is overexpressed in prostate cancer and prostatic intraepithelial neoplasia lesions, and it is positively associated with Gleason score. Urol Oncol. 2014;32:53.e23–9.

    Article  CAS  PubMed  Google Scholar 

  5. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  Google Scholar 

  6. Nakamura H, Arihara Y, Takada K. Targeting STEAP1 as an anticancer strategy. Front Oncol. 2023;13:1285661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhatia V, Kamat NV, Pariva TE, Wu LT, Tsao A, Sasaki K, et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun. 2023;14:2041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ihlaseh-Catalano SM, Drigo SA, de Jesus CM, Domingues MA, Trindade Filho JC, de Camargo JL, et al. STEAP1 protein overexpression is an independent marker for biochemical recurrence in prostate carcinoma. Histopathology. 2013;63:678–85.

    Article  PubMed  Google Scholar 

  9. Danila DC, Szmulewitz RZ, Vaishampayan UN, Higano CS, Gilbert HN, Brunstein F, et al. Phase I study of DSTP3086S, an antibody-drug conjugate targeting six-transmembrane epithelial antigen of prostate 1, in metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37:3518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nolan-Stevaux O, Darpo B, Prawira A, Aggarwal R, Williams K, Liao R, et al. AMG 509 (Xaluritamig), an anti-STEAP1 XmAb 2+1 T-cell redirecting immune therapy with avidity-dependent activity against prostate cancer. Cancer Discov. 2024;14:90–103.

    Article  CAS  PubMed  Google Scholar 

  11. Gomes IM, Maia CJ, Santos CR. STEAP proteins: from structure to applications in cancer therapy. Mol Cancer Res. 2012;10:573–87.

    Article  CAS  PubMed  Google Scholar 

  12. Yamamoto T, Tamai Y, Tanaka M, Yamazaki Y, Nakano M, Kanai Y, et al. Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor growth via intercellular communication. Exp Cell Res. 2013;319:2617–26.

    Article  CAS  PubMed  Google Scholar 

  13. Grunewald TGP, Bach H, Cossarizza A, Matsumoto I. The STEAP protein family: versatile oxidoreductases and targets for cancer immunotherapy with overlapping and distinct cellular functions. Biol Cell. 2012;104:641–57.

    Article  CAS  PubMed  Google Scholar 

  14. Ohgami RS, Campagna DR, McDonald A, Fleming MD. The Steap proteins are metalloreductases. Blood. 2006;108:1388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen WJ, Lin J, Luo L, Chen M, Liu Y, Zhao Z, et al. Regulatory roles of six-transmembrane epithelial antigen of the prostate family members in the occurrence and development of malignant tumors. Front Cell Dev Biol. 2021;9:752426.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oosterheert W, Marchese S, Mattevi A. Structure, function and mechanism of six-transmembrane epithelial antigen of the prostate (STEAP) enzymes: insights into a transmembrane oxidoreductase family related to NADPH oxidases. In: Structure and function of membrane proteins. Springer; 2023. pp. 521–34. https://doi.org/10.1007/978-3-031-23752-2_31.

  17. Oosterheert W, Gros P. Cryo-electron microscopy structure and potential enzymatic function of human six-transmembrane epithelial antigen of the prostate 1 (STEAP1). J Biol Chem. 2020;295:9502–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13:342–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article  CAS  PubMed  Google Scholar 

  20. Grunewald TGP, Diebold I, Esposito I, Plehm S, Hauer K, Thiel U, et al. STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors. Mol Cancer Res. 2012;10:52–65.

    Article  CAS  PubMed  Google Scholar 

  21. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK. Oxidative stress in prostate cancer. Cancer Lett. 2009;282:125–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura H, Morimoto Y, Komatsu T, Li B, Takano N, Arihara Y, et al. Six-transmembrane epithelial antigen of the prostate 1 protects against increased oxidative stress via a nuclear erythroid 2-related factor pathway in colorectal cancer. Cancer Gene Ther. 2019;26:313–22.

    Article  CAS  PubMed  Google Scholar 

  23. Pan Y, Li Y, Guo L, Zhao Y, Zhao X. [Influence of expression of six transmembrane epithelial antigen of the prostate-1 on intracellular reactive oxygen species level and cell growth: an in vitro experiment]. Zhonghua Yi Xue Za Zhi. 2008;88:641–4.

    CAS  PubMed  Google Scholar 

  24. Huo SF, Zhu WT, Wu H, Jian B, Zhao ZY, Feng JY, et al. STEAP1 facilitates metastasis and epithelial-mesenchymal transition of lung adenocarcinoma via the JAK2/STAT3 signaling pathway. Biosci Rep. 2020;40:BSR20193169.

  25. Zhu J, Xu S, Gao W, Dong J, Xu B, Qin Y, et al. The molecular mechanisms of regulating oxidative stress-induced ferroptosis and therapeutic strategy in tumors. Oxid Med Cell Longev. 2020;2020:8810785.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zou X, Peng H, Zhou A, Gong X, Song X, Wu W, et al. Inhibition of STEAP1 ameliorates inflammation and ferroptosis of acute lung injury caused by sepsis in LPS-induced human pulmonary microvascular endothelial cells. Mol Biol Rep. 2023;50:5667–74.

    Article  CAS  PubMed  Google Scholar 

  27. Liang J, Gao Z, Wang Y, Liu X, Wei B, Fan L, et al. Ferroptosis landscape in prostate cancer from molecular and metabolic perspective. Cell Death Discov. 2023;9:128.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cao PHA, Skovbakke SL, Christensen JK, Boström PJ, Rørth M, Nordentoft I, et al. Unlocking ferroptosis in prostate cancer – the road to novel therapies and imaging markers. Nat Rev Urol. 2024;21:615–37.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rocha SM, Santos FM, Socorro S, Passarinha LA, Maia CJ. Proteomic analysis of STEAP1 knockdown in human LNCaP prostate cancer cells. Biochim Biophys Acta Mol Cell Res. 2023;1870:119522.

    Article  CAS  PubMed  Google Scholar 

  30. Jiao Z, Wang S, Xu Z, Ren F, Li Y, Liu X, et al. Six-transmembrane epithelial antigen of the prostate 1 expression promotes ovarian cancer metastasis by aiding progression of epithelial-to-mesenchymal transition. Histochem Cell Biol. 2020;154:215–30.

    Article  CAS  PubMed  Google Scholar 

  31. Gomes IM, Rocha SM, Gaspar C, Alho I, Gouveia AM, Oliveira MJ, et al. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer cells counteracting the effect of androgens. Med Oncol. 2018;35:40.

    Article  PubMed  Google Scholar 

  32. Rocha SM, Alho I, Gaspar C, Arinto P, Maia CJ, Gomes IM, et al. STEAP1 regulation and its influence modulating the response of LNCaP prostate cancer cells to bicalutamide, enzalutamide and apalutamide. Mol Med Rep. 2023;27:52.

  33. Lin TY, Park JA, Long A, Guo HF, Cheung NKV. Novel potent anti-STEAP1 bispecific antibody to redirect T cells for cancer immunotherapy. J Immunother Cancer. 2021;9:e003114.

  34. Rocha SM, Socorro S, Passarinha LA, Maia CJ. Comprehensive landscape of STEAP family members expression in human cancers: Unraveling the potential usefulness in clinical practice using integrated bioinformatics analysis. Data. 2022;7:64.

  35. Rocha SM, Gouveia MJ, Alho I, Passarinha LA, Maia CJ, Gomes IM, et al. STEAP1 knockdown decreases the sensitivity of prostate cancer cells to paclitaxel, docetaxel and cabazitaxel. Int J Mol Sci. 2023;24:6643.

  36. Bizzaro CL, D’Agostino S, Chen X, Shahid Z, Li M, Almeida L, et al. Exploring STEAP1 expression in prostate cancer cells in response to androgen deprivation and in small extracellular vesicles. Mol Cancer Res. 2025. https://doi.org/10.1158/1541-7786.MCR-24-0903.

  37. Carrasquillo JA, Fine BM, Pandit-Taskar N, Larson SM, Fleming M, Smith-Jones PM, et al. Imaging patients with metastatic castration-resistant prostate cancer using (89)Zr-DFO-MSTP2109A anti-STEAP1 antibody. J Nucl Med. 2019;60:1517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khanna K, Salmond N, Lynn KS, Leong HS, Williams KC. Clinical significance of STEAP1 extracellular vesicles in prostate cancer. Prostate Cancer Prostatic Dis. 2021;24:802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poon AC, Tang Y, Li C, Wu S. Nanoscale flow cytometry of patient plasma for the detection of prostate cancer-associated extracellular vesicles. STEM Fellowsh J. 2017;3:1–2.

    Article  Google Scholar 

  40. Sheng M, Lee JH, Kim S, Patel S, Wong C, Chan J, et al. Abstract 61: a novel immunotherapy for metastatic prostate cancer: a monoclonal antibody that can bind both STEAP1 and STEAP2. Cancer Res. 2024;84:61–61.

    Article  Google Scholar 

  41. OncologyPipeline. Vandortuzumab vedotin discontinued after Phase I trial in 2016. 2023. https://www.oncologypipeline.com/apexonco/esmo-2023-amgens-steap1-project-spurs-cautious-optimism.

  42. Yu J, Chen L, Zhou P, Li D, Wang J, Huang Y, et al. The anti-STEAP1/PSMA ADC, DXC008: assessment of anti-tumor efficacy, pharmacokinetic, and toxicity properties. J Clin Oncol. 2025;43:e17161.

    Article  Google Scholar 

  43. Zhang L, Zhou X, Pan Y, Li M, Huang H, Wang Y, et al. The role of STEAP1 in prostate cancer: implications for diagnosis and therapeutic strategies. Biomedicines. 2025;13:794

  44. A Phase I, open-label, multicenter, first-in-human, dose escalation and expansion clinical study to evaluate the safety, tolerability, pharmacokinetic profiles and preliminary efficacy of DXC008 in patients with prostate cancer and other solid tumors (such as Ewing sarcoma). 2025. ClinicalTrials.gov identifier: NCT06926283. https://clinicaltrials.gov/study/NCT06926283 (accessed 23 Sep 2025).

  45. Kelly WK, Aggarwal R, Petrylak DP, Tagawa ST, Vogelzang NJ, Yu EY, et al. Xaluritamig, a STEAP1 × CD3 XmAb 2+1 immune therapy for metastatic castration-resistant prostate cancer: results from dose exploration in a first-in-human study. Cancer Discov. 2024;14:76–89.

    Article  CAS  PubMed  Google Scholar 

  46. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Narayan V, Barber-Rotenberg JS, Jung IY, Lacey SF, Rech AJ, Davis MM, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med. 2022;28:724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stein MN, Frank L, Petrylak DP, Heath EI, Yu EY, George DJ, et al. Immunotherapeutic trial in men with biochemical recurrence after definitive local therapy for prostate cancer: a clinical trial in progress. J Immunother Cancer. 2023;11:A755.

    Google Scholar 

  49. Prime-boost immunotherapeutic trial in men with biochemical recurrence after definitive local therapy for prostate cancer. 2025. ClinicalTrials.gov identifier: NCT05617040. https://www.clinicaltrials.gov/study/NCT05617040 (accessed 23 Sep 2025).

Download references

Author information

Authors and Affiliations

Authors

Contributions

JYH drafted the sections on the introduction, clinical implications, diagnostics, and therapeutics, and prepared the tables and figures, as well as formatted the overall manuscript. MS wrote the sections on molecular mechanisms and biological roles and contributed to figure preparation. DK provided critical revision of the entire manuscript and drafted the conclusion. HSL contributed to the molecular mechanisms and roles section and reviewed the manuscript. UE, as principal investigator, supervised the project and contributed to critical revision, overall review, and guidance.

Corresponding author

Correspondence to Urban Emmenegger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J.Y., Sheng, M., Khalaf, D. et al. STEAP1-targeted strategies in advanced prostate cancer: a review on therapeutic and diagnostic implications. Prostate Cancer Prostatic Dis (2025). https://doi.org/10.1038/s41391-025-01038-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41391-025-01038-8

Search

Quick links