Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AI-aided diagnostic performance for prostate MRI: systematic review and meta-analysis

Abstract

Background

AI is increasingly integrated within prostate cancer diagnosis pathway.

Purpose

To provide estimates of diagnostic accuracy of AI assistance for clinically significant prostate cancer (csPCa) via MRI.

Materials and methods

A systematic search of PubMed, Embase, Cochrane, Scopus and Web of Science from January 2017 to October 2024 was performed for studies on the diagnostic utility of AI for prostate MRI. Diagnostic performance metrics were synthesized through hierarchical summary receiver operating characteristic modeling with random-effects assumptions. Specially, to test inferiority and potential superiority of AI, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), cancer detection rate (CDR), and accuracy was pairwisely compared between AI and radiologists in study level using odds ratios (ORs) with Z-statistics.

Results

7398 patients from 29 studies with AI-vs-human pairwise comparison were included. When acting as an assistant to human readers, AI demonstrated superior performance compared to stand-alone human readers in diagnosing csPCa via MRI, specifically with higher sensitivity (86.5% vs 82.6%, P = 0.001), specificity (57.8% vs 50.0%, P = 0.028), PPV (64.3% vs 58.9%, P = 0.001), and NPV (82.9% vs 76.5%, P = 0.001) while maintaining comparable CDR (40.5% vs 38.6%, P = 0.093). When used as standalone readers, AI exhibited higher specificity (58.7% vs 48.7%, P = 0.026) but at the cost of reduced sensitivity (87.2% vs 90.1%, P = 0.017). Subgroup analysis indicated that readers of varying experience levels could all improve their diagnostic performance with AI assistance.

Conclusion

Integrating AI as an assistant in csPCa diagnostic workflows could enhance accuracy, particularly for less experienced readers.

Clinical Trial Registration information

Trial Name: The efficiency comparison of radiologists with or without assistance of artificial intelligence in prostate cancer diagnosis: a meta-analysis. Registration date: April 17, 2024. Registration number: CRD42024533016. Registration information available at: https://www.crd.york.ac.uk/PROSPERO/.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Results of heterogeneity test among the studies involving AI and standalone human readers.
Fig. 2: Summary receiver operating characteristic curve (SROC) analysis of human-AI versus human-alone for the diagnosis of clinically significant prostate cancer (csPCa).
Fig. 3: Results of pairwise comparison of sensitivity, specificity, positive predictive value (PPV), Negative Predictive Value (NPV) and cancer detection rate (CDR) between AI and human readers in threshold-predefined performance.
Fig. 4: Subgroup analysis of the impactive factors of heterogeneity in AI-acted performance.
Fig. 5

Similar content being viewed by others

Data availability

Deidentified blinded raw data used to conduct the retrospective and prospective analyses can be made available upon request to YDZ.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–249.

    PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    PubMed  Google Scholar 

  3. Ahdoot M, Wilbur AR, Reese SE, Lebastchi AH, Mehralivand S, Gomella PT, et al. MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N Engl J Med. 2020;382:917–28.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ilic D, Djulbegovic M, Jung JH, Hwang EC, Zhou Q, Cleves A, et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ. 2018;362:k3519.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Loeb S, Bjurlin MA, Nicholson J, Tammela TL, Penson DF, Carter HB, et al. Overdiagnosis and overtreatment of prostate cancer. Eur Urol. 2014;65:1046–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nguyen-Nielsen M, Borre M. Diagnostic and Therapeutic Strategies for Prostate Cancer. Semin Nucl Med. 2016;46:484–90.

    Article  PubMed  Google Scholar 

  7. Turkbey B, Brown AM, Sankineni S, Wood BJ, Pinto PA, Choyke PL. Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J Clin. 2016;66:326–36.

    PubMed  Google Scholar 

  8. Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313:390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017;389:815–22.

    Article  PubMed  Google Scholar 

  10. Fazekas T, Shim SR, Basile G, Baboudjian M, Koi T, Przydacz M et al. Magnetic Resonance Imaging in Prostate Cancer Screening: A Systematic Review and Meta-Analysis. JAMA Oncol. 2024;10:745–54.

  11. Girometti R, Giannarini G, Greco F, Isola M, Cereser L, Como G, et al. Interreader agreement of PI-RADS v. 2 in assessing prostate cancer with multiparametric MRI: A study using whole-mount histology as the standard of reference. J Magn Reson Imaging. 2019;49:546–55.

    Article  PubMed  Google Scholar 

  12. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med. 2018;378:1767–77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thai JN, Narayanan HA, George AK, Siddiqui MM, Shah P, Mertan FV, et al. Validation of PI-RADS Version 2 in Transition Zone Lesions for the Detection of Prostate Cancer. Radiology. 2018;288:485–91.

    Article  PubMed  Google Scholar 

  14. Shankar PR, Kaza RK, Al-Hawary MM, Masch WR, Curci NE, Mendiratta-Lala M, et al. Impact of Clinical History on Maximum PI-RADS Version 2 Score: A Six-Reader 120-Case Sham History Retrospective Evaluation. Radiology. 2018;288:158–63.

    Article  PubMed  Google Scholar 

  15. Padhani AR, Turkbey B. Detecting Prostate Cancer with Deep Learning for MRI: A Small Step Forward. Radiology. 2019;293:618–9.

    Article  PubMed  Google Scholar 

  16. Wildeboer RR, van Sloun RJG, Wijkstra H, Mischi M. Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods. Comput Methods Prog Biomed. 2020;189:105316.

    Article  Google Scholar 

  17. Roethke MC, Kuru TH, Mueller-Wolf MB, Agterhuis E, Edler C, Hohenfellner M, et al. Evaluation of an Automated Analysis Tool for Prostate Cancer Prediction Using Multiparametric Magnetic Resonance Imaging. PloS One. 2016;11:e0159803.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Computer-Aided Detection of Prostate Cancer in MRI. IEEE Trans Med Imaging. 2014;33:1083–92.

  19. Tsehay Yohannes LN, Holger R, Xiaosong W, Tae KJ, Baris T, Peter P, et al. Convolutional neural network based deep-learning architecture for prostate cancer detection on multiparametric magnetic resonance images. In Society of Photo-Optical Instrumentation Engineers (SPICE). Bellingham, Washington, USA: SPIE; 2017.

  20. De Vente C, Vos P, Hosseinzadeh M, Pluim J, Veta M. Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-parametric MRI. IEEE Trans Bio-med Eng. 2021;68:374–83.

  21. Saha A, Hosseinzadeh M, Huisman H. End-to-end prostate cancer detection in bpMRI via 3D CNNs: Effects of attention mechanisms, clinical priori and decoupled false positive reduction. Med Image Anal. 2021;73:102155.

    Article  PubMed  Google Scholar 

  22. Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med. 2022;28:924–33.

    Article  CAS  PubMed  Google Scholar 

  23. Liu G, Pan S, Zhao R, Zhou H, Chen J, Zhou X et al. The added value of AI-based computer-aided diagnosis in classification of cancer at prostate MRI. Eur Radiol. 2023;33:5118–30.

  24. Roest C, Kwee TC, Saha A, Fütterer JJ, Yakar D, Huisman H. AI-assisted biparametric MRI surveillance of prostate cancer: feasibility study. Eur Radio. 2023;33:89–96.

    Article  CAS  Google Scholar 

  25. Seetharaman A, Bhattacharya I, Chen LC, Kunder CA, Shao W, Soerensen SJC, et al. Automated detection of aggressive and indolent prostate cancer on magnetic resonance imaging. Med Phys. 2021;48:2960–72.

    Article  PubMed  Google Scholar 

  26. Forookhi A, Laschena L, Pecoraro M, Borrelli A, Massaro M, Dehghanpour A, et al. Bridging the experience gap in prostate multiparametric magnetic resonance imaging using artificial intelligence: A prospective multi-reader comparison study on inter-reader agreement in PI-RADS v2.1, image quality and reporting time between novice and expert readers. Eur J Radio. 2023;161:110749.

    Article  Google Scholar 

  27. Schelb P, Kohl S, Radtke JP, Wiesenfarth M, Kickingereder P, Bickelhaupt S, et al. Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment. Radiology. 2019;293:607–17.

    Article  PubMed  Google Scholar 

  28. Giannini V, Mazzetti S, Cappello G, Doronzio VM, Vassallo L, Russo F, et al. Computer-Aided Diagnosis Improves the Detection of Clinically Significant Prostate Cancer on Multiparametric-MRI: A Multi-Observer Performance Study Involving Inexperienced Readers. Diagnostics. 2021;11:973.

  29. Labus S, Altmann MM, Huisman H, Tong A, Penzkofer T, Choi MH, et al. A concurrent, deep learning-based computer-aided detection system for prostate multiparametric MRI: a performance study involving experienced and less-experienced radiologists. Eur Radio. 2023;33:64–76.

    Article  Google Scholar 

  30. Li D, Han X, Gao J, Zhang Q, Yang H, Liao S, et al. Deep Learning in Prostate Cancer Diagnosis Using Multiparametric Magnetic Resonance Imaging With Whole-Mount Histopathology Referenced Delineations. Front Med. 2021;8:810995.

    Article  Google Scholar 

  31. Hosseinzadeh M, Saha A, Brand P, Slootweg I, de Rooij M, Huisman H. Deep learning-assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge. Eur Radio. 2022;32:2224–34.

    Article  CAS  Google Scholar 

  32. Zhong X, Cao R, Shakeri S, Scalzo F, Lee Y, Enzmann DR, et al. Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI. Abdom Radio. 2019;44:2030–9.

    Article  Google Scholar 

  33. Sanford T, Harmon SA, Turkbey EB, Kesani D, Tuncer S, Madariaga M, et al. Deep-Learning-Based Artificial Intelligence for PI-RADS Classification to Assist Multiparametric Prostate MRI Interpretation: A Development Study. J Magn Reson Imaging. 2020;52:1499–507.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Youn SY, Choi MH, Kim DH, Lee YJ, Huisman H, Johnson E et al. Detection and PI-RADS classification of focal lesions in prostate MRI: Performance comparison between a deep learning-based algorithm (DLA) and radiologists with various levels of experience. Eur J Radiol. 2021;142:109894.

  35. Cai JC, Nakai H, Kuanar S, Froemming AT, Bolan CW, Kawashima A, et al. Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI. Radiology. 2024;312:e232635.

    Article  PubMed  Google Scholar 

  36. Guenzel K, Lukas Baumgaertner G, Padhani AR, Luckau J, Carsten Lock U, Ozimek T et al. Diagnostic Utility of Artificial Intelligence-assisted Transperineal Biopsy Planning in Prostate Cancer Suspected Men: A Prospective Cohort Study. Eur Urol Focus. 2024;10:833–42.

  37. Hamm CA, Baumgartner GL, Biessmann F, Beetz NL, Hartenstein A, Savic LJ, et al. Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI. Radiology. 2023;307:e222276.

    Article  PubMed  Google Scholar 

  38. Jiang K-W, Song Y, Hou Y, Zhi R, Zhang J, Bao M-L, et al. Performance of Artificial Intelligence-Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study. J Magn Resonance Imaging. 2023;57:1352–64.

    Article  Google Scholar 

  39. Li M, Yang L, Yue Y, Xu J, Huang C, Song B. Use of Radiomics to Improve Diagnostic Performance of PI-RADS v2.1 in Prostate Cancer. Front Oncol. 2020;10:631831.

    Article  PubMed  Google Scholar 

  40. Mehralivand S, Harmon SA, Shih JH, Smith CP, Lay N, Argun B, et al. Multicenter Multireader Evaluation of an Artificial Intelligence-Based Attention Mapping System for the Detection of Prostate Cancer With Multiparametric MRI. AJR Am J Roentgenol. 2020;215:903–12.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Netzer N, Weißer C, Schelb P, Wang X, Qin X, Görtz M, et al. Fully Automatic Deep Learning in Bi-institutional Prostate Magnetic Resonance Imaging: Effects of Cohort Size and Heterogeneity. Invest Radio. 2021;56:799–808.

    Article  CAS  Google Scholar 

  42. Schelb P, Wang X, Radtke JP, Wiesenfarth M, Kickingereder P, Stenzinger A, et al. Simulated clinical deployment of fully automatic deep learning for clinical prostate MRI assessment. Eur Radio. 2021;31:302–13.

    Article  Google Scholar 

  43. Schrader A, Netzer N, Hielscher T, Gortz M, Zhang KS, Schutz V, et al. Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI: comparison to PI-RADS and integration with clinical data in nomograms. Eur Radiol. 2024;34:7909–20.

  44. Sun Z, Wang K, Kong Z, Xing Z, Chen Y, Luo N, et al. A multicenter study of artificial intelligence-aided software for detecting visible clinically significant prostate cancer on mpMRI. Insights Imaging. 2023;14:72.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sun Z, Wang K, Wu C, Chen Y, Kong Z, She L, et al. Using an artificial intelligence model to detect and localize visible clinically significant prostate cancer in prostate magnetic resonance imaging: a multicenter external validation study. Quant Imaging Med Surg. 2024;14:43–60.

    Article  PubMed  Google Scholar 

  46. Weißer C, Netzer N, Görtz M, Schütz V, Hielscher T, Schwab C, et al. Weakly Supervised MRI Slice-Level Deep Learning Classification of Prostate Cancer Approximates Full Voxel- and Slice-Level Annotation: Effect of Increasing Training Set Size. J Magn Reson Imaging. 2024;59:1409–22.

    Article  PubMed  Google Scholar 

  47. Winkel DJ, Tong A, Lou B, Kamen A, Comaniciu D, Disselhorst JA, et al. A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study. Invest Radio. 2021;56:605–13.

    Article  CAS  Google Scholar 

  48. Zhang KS, Schelb P, Netzer N, Tavakoli AA, Keymling M, Wehrse E, et al. Pseudoprospective Paraclinical Interaction of Radiology Residents With a Deep Learning System for Prostate Cancer Detection Experience, Performance, and Identification of the Need for Intermittent Recalibration. Investig Radiol. 2022;57:601–12.

    Article  CAS  Google Scholar 

  49. Zhao L, Bao J, Qiao X, Jin P, Ji Y, Li Z, et al. Predicting clinically significant prostate cancer with a deep learning approach: a multicentre retrospective study. Eur J Nucl Med Mol Imaging. 2023;50:727–41.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu L, Gao G, Zhu Y, Han C, Liu X, Li D, et al. Fully automated detection and localization of clinically significant prostate cancer on MR images using a cascaded convolutional neural network. Front Oncol. 2022;12:958065.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Arber T, Jaouen T, Campoy S, Rabilloud M, Souchon R, Abbas F, et al. Zone-specific computer-aided diagnosis system aimed at characterizing ISUP ≥ 2 prostate cancers on multiparametric magnetic resonance images: evaluation in a cohort of patients on active surveillance. World J Urol. 2023;41:3527–33.

    Article  CAS  PubMed  Google Scholar 

  52. Westphalen AC, McCulloch CE, Anaokar JM, Arora S, Barashi NS, Barentsz JO, et al. Variability of the Positive Predictive Value of PI-RADS for Prostate MRI across 26 Centers: Experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel. Radiology. 2020;296:76–84.

    Article  PubMed  Google Scholar 

  53. Garcia-Becerra CA, Arias-Gallardo MI, Juarez-Garcia JE, Soltero-Molinar V, Rivera-Rocha MI, Parra-Camaño LF, et al. Head-to-head comparison of diagnostic test accuracy between biparametric and multiparametric MRI: an updated systematic review and bivariate meta-analysis. Prostate Cancer Prostatic Dis. 2025. https://doi.org/10.1038/s41391-025-00999-0.

  54. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer. Nat Rev Urol. 2019;16:391–403.

    Article  PubMed  Google Scholar 

  55. Saha A, Bosma JS, Twilt JJ, van Ginneken B, Bjartell A, Padhani AR, et al. Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): an international, paired, non-inferiority, confirmatory study. Lancet Oncol. 2024;25:879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Molière S, Hamzaoui D, Ploussard G, Mathieu R, Fiard G, Baboudjian M, et al. A Systematic Review of the Diagnostic Accuracy of Deep Learning Models for the Automatic Detection, Localization, and Characterization of Clinically Significant Prostate Cancer on Magnetic Resonance Imaging. Eur Urol Oncol. 2025;8:1182–202.

  57. Hershenhouse JS, Mokhtar D, Eppler MB, Rodler S, Storino Ramacciotti L, Ganjavi C, et al. Accuracy, readability, and understandability of large language models for prostate cancer information to the public. Prostate Cancer Prostatic Dis. 2025;28:394–9.

    Article  PubMed  Google Scholar 

  58. Morozov A, Taratkin M, Bazarkin A, Rivas JG, Puliatti S, Checcucci E, et al. A systematic review and meta-analysis of artificial intelligence diagnostic accuracy in prostate cancer histology identification and grading. Prostate Cancer Prostatic Dis. 2023;26:681–92.

    Article  PubMed  Google Scholar 

  59. Baydoun A, Jia AY, Zaorsky NG, Kashani R, Rao S, Shoag JE, et al. Artificial intelligence applications in prostate cancer. Prostate Cancer Prostatic Dis. 2024;27:37–45.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao Y, Zhang L, Zhang S, Li J, Shi K, Yao D, et al. Machine learning-based MRI imaging for prostate cancer diagnosis: systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2025. https://doi.org/10.1038/s41391-025-00997-2.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Y.H.; 82302308).

Author information

Authors and Affiliations

Contributions

Study conception: Xin-Ru Xie, Yu-Dong Zhang. Data collection: Xin-Ru Xie, Ying Hou, Shuai Shan, Rui Zhi, Chen-Jiang Wu, Yi-Fan Xia, Wei Xi, Zhen Li, Yu-Dong Zhang. Data analysis: Xin-Ru Xie, Ying Hou, Shuai Shan, Rui Zhi, Chen-Jiang Wu, Yi-Fan Xia, Wei Xi, Zhen Li, Yu-Dong Zhang. Technical support: Wei Xi, Yu-Dong Zhang. Administrative support: Xin-Ru Xie, Yu-Dong Zhang. Manuscript drafting: Ying Hou, Yu-Dong Zhang. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Yu-Dong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, XR., Hou, Y., Shan, S. et al. AI-aided diagnostic performance for prostate MRI: systematic review and meta-analysis. Prostate Cancer Prostatic Dis (2025). https://doi.org/10.1038/s41391-025-01053-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41391-025-01053-9

Search

Quick links