Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systematic profiling of tumor-associated antigen expression for antibody-drug conjugate in prostate cancer

Abstract

Background

The aim of this study is to better characterize the expression profiles of well-established tumor-associated antigen (TAA) for antibody-drug conjugates (ADC) in primary lesion (PL) and bone metastatic lesion(BML) of prostate cancer (PCa).

Methods

Mass spectrometry (MS) and immunohistochemistry (IHC) were used to comprehensively compare the expression of HER2, NECTIN4, TROP2, PSMA, TF, STEAP1 and B7H3 in the matched cohort (n = 27 pairs), which included matched PL and BML samples from the same patients. IHC was then used to validate the expression of these TAAs in another independent unmatched cohort, including PL (n = 100) and BML (n = 49). IHC assessment included traditional semi-quantitative evaluation, computer-assisted H-score assessment and normalized membrane ratio (NMR) analysis.

Results

B7H3, STEAP1 and PSMA consistently exhibited high and stable expression rate in matched PL and BML, whereas the expression levels of the other TAAs may fluctuate between the two status. In the unmatched cohort, the expression levels of TROP2, TF, PSMA, and B7H3 were significantly lower, while the expression levels of HER2 and STEAP1 were significantly higher in BML than in PL (all p < 0.05). Overall, STEAP1, B7H3 and PSMA exhibited high expression rates in BML, with STEAP1 and B7H3 depicting relatively homogeneous high membranous expression patterns. The co-expression of these TAAs was frequently observed. In the dual-TAA combination analysis, any pairwise combination among B7H3, STEAP1, and PSMA exhibited relatively high expression coverage(å 85%) for BML.

Conclusions

B7H3, STEAP1, and PSMA might be the predominant targets in both PL and BML. Our findings reveal the dynamic and heterogeneous nature of TAA expression in PCa and may provide insights for integrating ADC-based targeted therapies into the existing treatment landscape for PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study workflow of methodology and cohort formation.
Fig. 2: Expression profiles of the well established cell surface TAAs in matched PL and BML.
Fig. 3: Expression profiles of the well established cell surface TAAs in unmatched cohort.
Fig. 4: Head-to-head comparison of TAA membranous H-score in the unmatched cohort.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and its supplementary information files. No custom code was developed.

References

  1. Yamada Y, Beltran H. The treatment landscape of metastatic prostate cancer. Cancer Lett. 2021;519:20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yanagisawa T, Rajwa P, Thibault C, Gandaglia G, Mori K, Kawada T, et al. Androgen receptor signaling inhibitors in addition to docetaxel with androgen deprivation therapy for metastatic hormone-sensitive prostate cancer: a systematic review and meta-analysis. Eur Urol. 2022;82:584–98.

    Article  CAS  PubMed  Google Scholar 

  3. Messina C, Giunta EF, Signori A, Rebuzzi SE, Banna GL, Maniam A, et al. Combining PARP inhibitors and androgen receptor signalling inhibitors in metastatic prostate cancer: a quantitative synthesis and meta-analysis. Eur Urol Oncol. 2024;7:179–88.

  4. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tarantino P, Carmagnani Pestana R, Corti C, Modi S, Bardia A, Tolaney SM, et al. Antibody-drug conjugates: smart chemotherapy delivery across tumor histologies. CA Cancer J Clin. 2022;72:165–82.

    PubMed  Google Scholar 

  6. Bosi C, Bartha A, Galbardi B, Notini G, Naldini MM, Licata L, et al. Pan-cancer analysis of antibody-drug conjugate targets and putative predictors of treatment response. Eur J Cancer. 2023;195:113379.

    Article  CAS  PubMed  Google Scholar 

  7. Lopez de Sa A, Diaz-Tejeiro C, Poyatos-Racionero E, Nieto-Jimenez C, Paniagua-Herranz L, Sanvicente A, et al. Considerations for the design of antibody drug conjugates (ADCs) for clinical development: lessons learned. J Hematol Oncol. 2023;16:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Esapa B, Jiang J, Cheung A, Chenoweth A, Thurston DE, Karagiannis SN. Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers. Cancers. 2023;15:1845.

  9. Cimadamore A, Cheng M, Santoni M, Lopez-Beltran A, Battelli N, Massari F, et al. New prostate cancer targets for diagnosis, imaging, and therapy: focus on prostate-specific membrane antigen. Front Oncol. 2018;8:653.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Galsky MD, Eisenberger M, Moore-Cooper S, Kelly WK, Slovin SF, DeLaCruz A, et al. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol. 2008;26:2147–54.

    Article  CAS  PubMed  Google Scholar 

  11. Hubert RS, Vivanco I, Chen E, Rastegar S, Leong K, Mitchell SC, et al. STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Natl Acad Sci USA. 1999;96:14523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scribner JA, Brown JG, Son T, Chiechi M, Li P, Sharma S, et al. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol Cancer Ther. 2020;19:2235–44.

    Article  CAS  PubMed  Google Scholar 

  13. Cimadamore A, Boixareu C, Sharp A, Beltran H, de Bono JS. Novel therapeutic strategies for metastatic prostate cancer care. Eur Urol. 2025;88:437–48.

    Article  CAS  PubMed  Google Scholar 

  14. Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med. 2022;387:9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bardia A, Tolaney SM, Punie K, Loirat D, Oliveira M, Kalinsky K, et al. Biomarker analyses in the phase III ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Ann Oncol. 2021;32:1148–56.

    Article  CAS  PubMed  Google Scholar 

  16. Nie L, Wu G, Culley DE, Scholten JC, Zhang W. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol. 2007;27:63–75.

    Article  CAS  PubMed  Google Scholar 

  17. Thyparambil SP, Liao W-L, Heaton R, Strasbaugh A, Melkie MA, Ling X. Proteomic profiling of antibody-drug conjugate (ADC) biomarkers in pancreatic cancer. J Clin Oncol. 2023;41:671.

    Article  Google Scholar 

  18. Thyparambil S, Liao W-L, Heaton R, Strasbaugh A, Melkie M, Ghafourian N, et al. Quantitative proteomics of antibody-drug conjugates and chemotherapy targets in prostate cancer. Cancer Res. 2023;83:2160.

    Article  Google Scholar 

  19. Coy S, Lee JS, Chan SJ, Woo T, Jones J, Alexandrescu S, et al. Systematic characterization of antibody-drug conjugate targets in central nervous system tumors. Neuro Oncol. 2024;26:458–72.

    Article  CAS  PubMed  Google Scholar 

  20. Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4:e297.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu N, Yao Z, Shang G, Ye D, Wang H, Zhang H, et al. Integrated proteogenomic characterization of urothelial carcinoma of the bladder. J Hematol Oncol. 2022;15:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zou X, Lin X, Cheng H, Chen Y, Wang R, Ma M, et al. Characterization of intratumoral tertiary lymphoid structures in pancreatic ductal adenocarcinoma: cellular properties and prognostic significance. J Immunother Cancer. 2023;11:e006698.

  23. Garassino MCSJ, Paz-Ares L, Lisberg A, Johnson M, Pérol M, Carroll D, et al. Normalized membrane ratio of TROP2 by quantitative continuous scoring is predictive of clinical outcomes in TROPION-lung 01. J Thorac Oncol. 2024;19:S2–S3.

    Article  Google Scholar 

  24. Colombo R, Tarantino P, Rich JR, LoRusso PM, de Vries EGE. The journey of antibody-drug conjugates: lessons learned from 40 years of development. Cancer Discov. 2024;14:2089–108.

    Article  CAS  PubMed  Google Scholar 

  25. Sheng X, Yan X, Wang L, Shi Y, Yao X, Luo H, et al. Open-label, multicenter, phase II study of RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma. Clin Cancer Res. 2021;27:43–51.

    Article  CAS  PubMed  Google Scholar 

  26. Pereira PMR, Mandleywala K, Ragupathi A, Lewis JS. Acute statin treatment improves antibody accumulation in EGFR- and PSMA-expressing tumors. Clin Cancer Res. 2020;26:6215–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mulati Y, Shen Q, Tian Y, Chen Y, Yao K, Yu W, et al. Characterizing PSMA heterogeneity in prostate cancer and identifying clinically actionable tumor associated antigens in PSMA negative cases. Sci Rep. 2025;15:23902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carrasquillo JA, Fine BM, Pandit-Taskar N, Larson SM, Fleming SE, Fox JJ, et al. Imaging patients with metastatic castration-resistant prostate cancer using (89)Zr-DFO-MSTP2109A anti-STEAP1 antibody. J Nucl Med. 2019;60:1517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang W, Li L, Liang Y, Yang Q, Mixdorf JC, Engle JW, et al. ImmunoPET imaging of Nectin4 expression in gastric and bladder cancer using [(64)Cu]Cu-NOTA-Padcev. Mol Pharm. 2025;22:3468–78.

    Article  CAS  PubMed  Google Scholar 

  30. Huang W, Wang T, Chao F, Yang Q, Mixdorf JC, Li L, et al. ImmunoPET imaging of Trop2 expression in bladder cancer using [(64)Cu]Cu-NOTA-Trodelvy. Mol Pharm. 2025;22:2266–75.

    Article  CAS  PubMed  Google Scholar 

  31. Casanova-Salas I, Aguilar D, Cordoba-Terreros S, Agundez L, Brandariz J, Herranz N, et al. Circulating tumor extracellular vesicles to monitor metastatic prostate cancer genomics and transcriptomic evolution. Cancer Cell. 2024;42:1301–12 e7.

    Article  CAS  PubMed  Google Scholar 

  32. Quaglia F, Krishn SR, Daaboul GG, Sarker S, Pippa R, Domingo-Domenech J, et al. Small extracellular vesicles modulated by alphaVbeta3 integrin induce neuroendocrine differentiation in recipient cancer cells. J Extracell Vesicles. 2020;9:1761072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Zhang L, Cheng L, Wang Y, Li M, Yu J, et al. Extracellular vesicle-derived biomarkers in prostate cancer care: opportunities and challenges. Cancer Lett. 2024;601:217184.

    Article  CAS  PubMed  Google Scholar 

  34. Zang X, Thompson RH, Al-Ahmadie HA, Serio AM, Reuter VE, Eastham JA, et al. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci USA. 2007;104:19458–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roth TJ, Sheinin Y, Lohse CM, Kuntz SM, Frigola X, Inman BA, et al. B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 2007;67:7893–900.

    Article  CAS  PubMed  Google Scholar 

  36. Fabrizio FP, Muscarella LA, Rossi A. B7-H3/CD276 and small-cell lung cancer: what’s new?. Transl Oncol. 2024;39:101801.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Zhang C, Zeng Y, Li Y, Huang S, Wang F, et al. Emergence and characterization of a ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone evolving moderate-level resistance to azithromycin in Shenzhen, China. Infect Drug Resist. 2021;14:4271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Johnson M, Awad M, Koyama T, Gutierrez M, Falchook GS, Piha-Paul SA, et al. Ifinatamab deruxtecan (I-DXd; DS-7300) in patients with refractory SCLC: a subgroup analysis of a phase 1/2 study. J Thorac Oncol. 2023;18:S54–S5.

    Article  Google Scholar 

  39. Chavin G, Sheinin Y, Crispen PL, Boorjian SA, Roth TJ, Rangel L, et al. Expression of immunosuppresive B7-H3 ligand by hormone-treated prostate cancer tumors and metastases. Clin Cancer Res. 2009;15:2174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo C, Figueiredo I, Gurel B, Neeb A, Seed G, Crespo M, et al. B7-H3 as a therapeutic target in advanced prostate cancer. Eur Urol. 2023;83:224–38.

    Article  CAS  PubMed  Google Scholar 

  41. Gomes IM, Arinto P, Lopes C, Santos CR, Maia CJ. STEAP1 is overexpressed in prostate cancer and prostatic intraepithelial neoplasia lesions, and it is positively associated with Gleason score. Urol Oncol. 2014;32:53 e23–9.

    Article  PubMed  Google Scholar 

  42. Bhatia V, Kamat NV, Pariva TE, Wu LT, Tsao A, Sasaki K, et al. Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun. 2023;14:2041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Penny HL, Hainline K, Theoharis N, Wu B, Brandl C, Webhofer C, et al. Characterization and root cause analysis of immunogenicity to pasotuxizumab (AMG 212), a prostate-specific membrane antigen-targeting bispecific T-cell engager therapy. Front Immunol. 2023;14:1261070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nauseef JT, Bander NH, Tagawa ST. Emerging prostate-specific membrane antigen-based therapeutics: small molecules, antibodies, and beyond. Eur Urol Focus. 2021;7:254–7.

    Article  PubMed  Google Scholar 

  45. Hummel HD, Kufer P, Grullich C, Seggewiss-Bernhardt R, Deschler-Baier B, Chatterjee M, et al. Pasotuxizumab, a BiTE((R)) immune therapy for castration-resistant prostate cancer: phase I, dose-escalation study findings. Immunotherapy. 2021;13:125–41.

    Article  CAS  PubMed  Google Scholar 

  46. Kelly WK, Danila DC, Lin CC, Lee JL, Matsubara N, Ward PJ, et al. Xaluritamig, a STEAP1 x CD3 XmAb 2+1 immune therapy for metastatic castration-resistant prostate cancer: results from dose exploration in a first-in-human study. Cancer Discov. 2024;14:76–89.

    Article  CAS  PubMed  Google Scholar 

  47. Zekri L, Lutz M, Prakash N, Manz T, Klimovich B, Mueller S, et al. An optimized IgG-based B7-H3xCD3 bispecific antibody for treatment of gastrointestinal cancers. Mol Ther. 2023;31:1033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41:1280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fallah J, Agrawal S, Gittleman H, Fiero MH, Subramaniam S, John C, et al. FDA approval summary: lutetium Lu 177 vipivotide tetraxetan for patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 2023;29:1651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tschernia NP, Norberg SM, Gulley JL. CAR T cells reach clinical milestone in prostate cancer. Nat Med. 2022;28:635–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by: 1. National Natural Science Foundation of China, General Program, Beijing, China (Grant No. 82370773). 2. National High Level Hospital Clinical Research Funding (Interdepartmental Clinical Research Project of Peking University First Hospital), Beijing, China (2023IR33). 3. National High Level Hospital Clinical Research Funding (Interdepartmental Clinical Research Project of Peking University First Hospital), Beijing, China (2024IR02). 4. Beijing Physician Scientist Training Project, Beijing, China (BJPSTP-2024-20). We would like to thank the Department of Orthopedics and Pathology at Peking University First Hospital for their support and assistance.

Author information

Authors and Affiliations

Authors

Contributions

Y.F., Q.Z., and Y.M. conceived and designed the study. Y.M., Y. Chen, Y. Cui, and X.S. contributed to sample acquisition. Y.M., Y.T. and K.Y. performed experiments and collected clinical data. Q.S. and Y.M. interpreted, organized, and analyzed the experimental results. Y.F., Q.Z. and X.S. provided overall supervision. Y.M. and Q.S. drafted the manuscript. Y.F., Q.Z., Z.H., W.Y., X.P. and D.C. provided manuscript guidance and critical revisions. Y.F., Q.Z. and X.S. provided funding support and submission guidance. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xinan Sheng, Qian Zhang or Yu Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The experiments involved in this study were approved by the Ethics Committee of Peking University First Hospital with exemption from informed consent (2023-289-001). All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulati, Y., Shen, Q., Chen, Y. et al. Systematic profiling of tumor-associated antigen expression for antibody-drug conjugate in prostate cancer. Prostate Cancer Prostatic Dis (2025). https://doi.org/10.1038/s41391-025-01066-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41391-025-01066-4

Search

Quick links