Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of SLCO1B3 polymorphisms on clinical outcomes in lung allograft recipients receiving mycophenolic acid

Abstract

Single-nucleotide polymorphisms (SNPs) in genes involved in mycophenolic acid (MPA) metabolism have been shown to contribute to variable MPA exposure, but their clinical effects are unclear. We aimed to determine if SNPs in key genes in MPA metabolism affect outcomes after lung transplantation. We performed a retrospective cohort study of 275 lung transplant recipients, 228 receiving mycophenolic acid and a control group of 47 receiving azathioprine. Six SNPs known to regulate MPA exposure from the SLCO, UGT and MRP2 families were genotyped. Primary outcome was 1-year survival. Secondary outcomes were 3-year survival, nonminimal (≥A2 or B2) acute rejection, and chronic lung allograft dysfunction (CLAD). Statistical analyses included time-to-event Kaplan–Meier with log-rank test and Cox regression modeling. We found that SLCO1B3 SNPs rs4149117 and rs7311358 were associated with decreased 1-year survival [rs7311358 HR 7.76 (1.37–44.04), p = 0.021; rs4149117 HR 7.28 (1.27–41.78), p = 0.026], increased risk for nonminimal acute rejection [rs4149117 TT334/T334G: OR 2.01 (1.06–3.81), p = 0.031; rs7311358 GG699/G699A: OR 2.18 (1.13–4.21) p = 0.019] and lower survival through 3 years for MPA patients but not for azathioprine patients. MPA carriers of either SLCO1B3 SNP had shorter survival after CLAD diagnosis (rs4149117 p = 0.048, rs7311358 p = 0.023). For the MPA patients, Cox regression modeling demonstrated that both SNPs remained independent risk factors for death. We conclude that hypofunctional SNPs in the SLCO1B3 gene are associated with an increased risk for acute rejection and allograft failure in lung transplant recipients treated with MPA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yusen RD, Edwards LB, Dipchand AI, Goldfarb SB, Kucheryavaya AY, Levvey BJ, et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-third adult lung and heart-lung transplant report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant. 2016;35:1170–84.

    PubMed  Google Scholar 

  2. Speich R, Schneider S, Hofer M, Irani S, Vogt P, Weder W, et al. Mycophenolate mofetil reduces alveolar inflammation, acute rejection and graft loss due to bronchiolitis obliterans syndrome after lung transplantation. Pulm Pharmacol Ther. 2010;23:445–9.

    CAS  PubMed  Google Scholar 

  3. Knight SR, Russell NK, Barcena L, Morris PJ. Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: a systematic review. Transplantation. 2009;87:785–94.

    CAS  PubMed  Google Scholar 

  4. Fulton B, Markham A. Mycophenolate mofetil. A review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs. 1996;51:278–98.

    CAS  PubMed  Google Scholar 

  5. Cox VC, Ensom MH. Mycophenolate mofetil for solid organ transplantation: does the evidence support the need for clinical pharmacokinetic monitoring? Ther Drug Monit. 2003;25:137–57.

    CAS  PubMed  Google Scholar 

  6. Shaw LM, Nicholls A, Hale M, Armstrong VW, Oellerich M, Yatscoff R, et al. Therapeutic monitoring of mycophenolic acid. A consensus panel report. Clin Biochem. 1998;31:317–22.

    CAS  PubMed  Google Scholar 

  7. Langers P, Press RR, Inderson A, Cremers SC, den Hartigh J, Baranski AG, et al. Limited sampling model for advanced mycophenolic acid therapeutic drug monitoring after liver transplantation. Ther Drug Monit. 2014;36:141–7.

    CAS  PubMed  Google Scholar 

  8. Sarangi SC, Reeta KH, Agarwal SK, Kaleekal T, Guleria S, Gupta YK. A pilot study on area under curve of mycophenolic acid as a guide for its optimal use in renal transplant recipients. Indian J Med Res. 2012;135:84–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. DeNofrio D, Loh E, Kao A, Korecka M, Pickering FW, Craig KA, et al. Mycophenolic acid concentrations are associated with cardiac allograft rejection. J Heart Lung Transplant. 2000;19:1071–6.

    CAS  PubMed  Google Scholar 

  10. Woillard JB, Saint-Marcoux F, Monchaud C, Youdarene R, Pouche L, Marquet P. Mycophenolic mofetil optimized pharmacokinetic modelling, and exposure-effect associations in adult heart transplant recipients. Pharmacol Res. 2015;99:308–15.

    CAS  PubMed  Google Scholar 

  11. Schutz E, Shipkova M, Armstrong VW, Wieland E, Oellerich M. Identification of a pharmacologically active metabolite of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Clin Chem. 1999;45:419–22.

    CAS  PubMed  Google Scholar 

  12. Bernard O, Tojcic J, Journault K, Perusse L, Guillemette C. Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos. 2006;34:1539–45.

    CAS  PubMed  Google Scholar 

  13. Wieland E, Shipkova M, Schellhaas U, Schutz E, Niedmann PD, Armstrong VW, et al. Induction of cytokine release by the acyl glucuronide of mycophenolic acid: a link to side effects? Clin Biochem. 2000;33:107–13.

    CAS  PubMed  Google Scholar 

  14. Gensburger O, Picard N, Marquet P. Effect of mycophenolate acyl-glucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clin Chem. 2009;55:986–93.

    CAS  PubMed  Google Scholar 

  15. Lamba V, Sangkuhl K, Sanghavi K, Fish A, Altman RB, Klein TE. PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014;24:73–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeong H, Kaplan B. Therapeutic monitoring of mycophenolate mofetil. Clin J Am Soc Nephrol. 2007;2:184–91.

    CAS  PubMed  Google Scholar 

  17. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34:429–55.

    CAS  PubMed  Google Scholar 

  18. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46:13–58.

    CAS  PubMed  Google Scholar 

  19. Barraclough KA, Lee KJ, Staatz CE. Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics. 2010;11:369–90.

    CAS  PubMed  Google Scholar 

  20. Burckart GJ, Hutchinson IV, Zeevi A. Pharmacogenomics and lung transplantation: clinical implications. Pharmacogenomics J. 2006;6:301–10.

    CAS  PubMed  Google Scholar 

  21. Geng F, Jiao Z, Dao YJ, Qiu XY, Ding JJ, Shi XJ, et al. The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals. Clin Chim Acta. 2012;413:683–90.

    PubMed  Google Scholar 

  22. Miura M, Satoh S, Inoue K, Kagaya H, Saito M, Inoue T, et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007;63:1161–9.

    CAS  PubMed  Google Scholar 

  23. van Schaik RH, van Agteren M, de Fijter JW, Hartmann A, Schmidt J, Budde K, et al. UGT1A9 −275T>A/−2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther. 2009;86:319–27.

    PubMed  Google Scholar 

  24. Ruiz J, Herrero MJ, Boso V, Megias JE, Hervas D, Poveda JL, et al. Impact of single nucleotide polymorphisms (SNPs) on immunosuppressive therapy in lung transplantation. Int J Mol Sci. 2015;16:20168–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng HX, Zeevi A, McCurry K, Schuetz E, Webber S, Ristich J, et al. The impact of pharmacogenomic factors on acute persistent rejection in adult lung transplant patients. Transpl Immunol. 2005;14:37–42.

    PubMed  Google Scholar 

  26. Verleden GM, Raghu G, Meyer KC, Glanville AR, Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant. 2014;33:127–33.

    PubMed  Google Scholar 

  27. Bando K, Paradis IL, Similo S, Konishi H, Komatsu K, Zullo TG, et al. Obliterative bronchiolitis after lung and heart-lung transplantation. An analysis of risk factors and management. J Thorac Cardiovasc Surg. 1995;110:4–13.

    CAS  PubMed  Google Scholar 

  28. Sanquer S, Amrein C, Grenet D, Guillemain R, Philippe B, Boussaud V, et al. Expression of calcineurin activity after lung transplantation: a 2-year follow-up. PLoS ONE. 2013;8:e59634.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharples LD, McNeil K, Stewart S, Wallwork J. Risk factors for bronchiolitis obliterans: a systematic review of recent publications. J Heart Lung Transplant. 2002;21:271–81.

    PubMed  Google Scholar 

  30. Burton CM, Iversen M, Scheike T, Carlsen J, Andersen CB. Is lymphocytic bronchiolitis a marker of acute rejection? An analysis of 2,697 transbronchial biopsies after lung transplantation. J Heart Lung Transplant. 2008;27:1128–34.

    PubMed  Google Scholar 

  31. Glanville AR, Aboyoun CL, Havryk A, Plit M, Rainer S, Malouf MA. Severity of lymphocytic bronchiolitis predicts long-term outcome after lung transplantation. Am J Respir Crit Care Med. 2008;177:1033–40.

    PubMed  Google Scholar 

  32. Shino MY, Weigt SS, Li N, Derhovanessian A, Sayah DM, Huynh RH, et al. Impact of allograft injury time of onset on the development of chronic lung allograft dysfunction after lung transplantation. Am J Transplant. 2017;17:1294–303.

    CAS  PubMed  Google Scholar 

  33. Davis WA, Finlen Copeland CA, Todd JL, Snyder LD, Martissa JA, Palmer SM. Spirometrically significant acute rejection increases the risk for BOS and death after lung transplantation. Am J Transplant. 2012;12:745–52.

    CAS  PubMed  Google Scholar 

  34. Guilinger RA, Paradis IL, Dauber JH, Yousem SA, Williams PA, Keenan RJ, et al. The importance of bronchoscopy with transbronchial biopsy and bronchoalveolar lavage in the management of lung transplant recipients. Am J Respir Crit Care Med. 1995;152(6 Pt 1):2037–43.

    CAS  PubMed  Google Scholar 

  35. Husain AN, Siddiqui MT, Holmes EW, Chandrasekhar AJ, McCabe M, Radvany R, et al. Analysis of risk factors for the development of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 1999;159:829–33.

    CAS  PubMed  Google Scholar 

  36. Izhakian S, Wasser WG, Fox BD, Vainshelboim B, Reznik JE, Kramer MR. Effectiveness of rabbit antithymocyte globulin in chronic lung allograft dysfunction. Transplant Proc. 2016;48:2152–6.

    CAS  PubMed  Google Scholar 

  37. Bellon H, Vandermeulen E, Verleden SE, Heigl T, Vriens H, Lammertyn E, et al. The effect of immunosuppression on airway integrity. Transplantation. 2017;101:2855–61.

    CAS  PubMed  Google Scholar 

  38. Picard N, Yee SW, Woillard JB, Lebranchu Y, Le Meur Y, Giacomini KM, et al. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 2010;87:100–8.

    CAS  PubMed  Google Scholar 

  39. Konig J, Cui Y, Nies AT, Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem. 2000;275:23161–8.

    CAS  PubMed  Google Scholar 

  40. Chiarelli LR, Molinaro M, Libetta C, Tinelli C, Cosmai L, Valentini G, et al. Inosine monophosphate dehydrogenase variability in renal transplant patients on long-term mycophenolate mofetil therapy. Br J Clin Pharmacol. 2010;69:38–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fukuda T, Goebel J, Thogersen H, Maseck D, Cox S, Logan B, et al. Inosine monophosphate dehydrogenase (IMPDH) activity as a pharmacodynamic biomarker of mycophenolic acid effects in pediatric kidney transplant recipients. J Clin Pharmacol. 2011;51:309–20.

    CAS  PubMed  Google Scholar 

  42. Weimert NA, Derotte M, Alloway RR, Woodle ES, Vinks AA. Monitoring of inosine monophosphate dehydrogenase activity as a biomarker for mycophenolic acid effect: potential clinical implications. Ther Drug Monit. 2007;29:141–9.

    CAS  PubMed  Google Scholar 

  43. Glander P, Hambach P, Braun KP, Fritsche L, Giessing M, Mai I, et al. Pre-transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am J Transplant. 2004;4:2045–51.

    CAS  PubMed  Google Scholar 

  44. Sombogaard F, van Schaik RH, Mathot RA, Budde K, van der Werf M, Vulto AG, et al. Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T>C polymorphism. Pharmacogenet Genomics. 2009;19:626–34.

    CAS  PubMed  Google Scholar 

  45. Wang J, Zeevi A, Webber S, Girnita DM, Addonizio L, Selby R, et al. A novel variant L263F in human inosine 5′-monophosphate dehydrogenase 2 is associated with diminished enzyme activity. Pharmacogenet Genomics. 2007;17:283–90.

    CAS  PubMed  Google Scholar 

  46. Wang J, Yang JW, Zeevi A, Webber SA, Girnita DM, Selby R, et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther. 2008;83:711–7.

    CAS  PubMed  Google Scholar 

  47. Winnicki W, Weigel G, Sunder-Plassmann G, Bajari T, Winter B, Herkner H, et al. An inosine 5′-monophosphate dehydrogenase 2 single-nucleotide polymorphism impairs the effect of mycophenolic acid. Pharmacogenomics J. 2010;10:70–76.

    CAS  PubMed  Google Scholar 

  48. Gensburger O, Van Schaik RH, Picard N, Le Meur Y, Rousseau A, Woillard JB, et al. Polymorphisms in type I and II inosine monophosphate dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil. Pharmacogenet Genomics. 2010;20:537–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu TY, Fridley BL, Jenkins GD, Batzler A, Wang L, Weinshilboum RM. Mycophenolic acid response biomarkers: a cell line model system-based genome-wide screen. Int Immunopharmacol. 2011;11:1057–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim S, Lee W, Chun S, Um TH, Min WK. Expression of IMPDH mRNA after mycophenolate administration in male volunteers. Biomed Res Int. 2014;2014:870209.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LK Tague is supported by the Washington University Institute of Clinical and Translational Sciences grant UL1TR002345 and by the Washington University Division of Pulmonary and Critical Care Medicine grant T32HL007317-39 from the National Institutes of Health (NIH). HS Kulkarni is supported by the National Center for Advancing Translational Sciences grant KL2 TR002346 from the NIH. AE Gelman is supported by grants from the Barnes Jewish Foundation, R01HL113436-01A1, 2RHL094601, R01HL121218-01, and P01AI116501-01. The content is solely the responsibility of the authors and does not necessarily represent the official view of Washington University, Barnes Jewish Foundation or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Gelman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tague, L.K., Byers, D.E., Hachem, R. et al. Impact of SLCO1B3 polymorphisms on clinical outcomes in lung allograft recipients receiving mycophenolic acid. Pharmacogenomics J 20, 69–79 (2020). https://doi.org/10.1038/s41397-019-0086-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41397-019-0086-0

This article is cited by

Search

Quick links