Table 3 Summary of predictive performance of each model for each emotion.
AUC | |||||
|---|---|---|---|---|---|
Emotion | PEM-Enet | PEM-SVM | PEM-RF | PDEM | GLMER |
Anxious | 0.749 | 0.722 | 0.764 | 0.765 | 0.687 |
Irritable | 0.711 | 0.683 | 0.716 | 0.724 | 0.648 |
Upset | 0.716 | 0.688 | 0.717 | 0.728 | 0.643 |
Lonely | 0.774 | 0.739 | 0.787 | 0.791 | 0.690 |
Accuracy at Optimal Cut-offs | |||||
Anxious | 0.680 | 0.660 | 0.690 | 0.701 | 0.645 |
Irritable | 0.653 | 0.632 | 0.653 | 0.667 | 0.613 |
Upset | 0.646 | 0.645 | 0.643 | 0.678 | 0.593 |
Lonely | 0.709 | 0.678 | 0.710 | 0.719 | 0.644 |
Sensitivity at Optimal Cut-offs | |||||
Anxious | 0.695 | 0.672 | 0.729 | 0.698 | 0.653 |
Irritable | 0.661 | 0.633 | 0.665 | 0.658 | 0.596 |
Upset | 0.669 | 0.605 | 0.666 | 0.639 | 0.621 |
Lonely | 0.702 | 0.696 | 0.740 | 0.728 | 0.644 |
Specificity at Optimal Cut-offs | |||||
Anxious | 0.674 | 0.656 | 0.675 | 0.703 | 0.642 |
Irritable | 0.650 | 0.632 | 0.649 | 0.670 | 0.619 |
Upset | 0.638 | 0.658 | 0.635 | 0.691 | 0.584 |
Lonely | 0.712 | 0.671 | 0.699 | 0.715 | 0.644 |