Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnolin overcomes EGFR TKI resistance in NSCLC by modulation of NDRG1-NRG2-HECW1 pathway

Abstract

Resistance of non-small cell lung cancer (NSCLC) to EGFR tyrosine kinase inhibitors (TKIs) limits the efficacy and leads to disease progression with mechanisms such as activation of autophagy in tumor cells, but the current therapeutic strategies are unable to intervene in this mechanism. Magnolin (Mag), a naturally derived compound, has garnered significant interest due to its potential antitumor properties. Through virtual screening methods, Mag was identified as a compound with potential to regulate molecular pathways closely related to drug resistance mechanisms. In this study, we investigated the ability of Mag to enhance EGFR TKI efficacy in resistant NSCLC. Afatinib-resistant cell line (HCC827AR) was established by continuously exposing HCC827 cells to afatinib (4 µM) for 6 months. Medium containing 4 µM afatinib was refreshed every 48 h. By conducting RNA sequencing (RNA-seq) and exome sequencing on HCC827AR cells, NRG2 was identified as a core-enriched gene. We demonstrated that Mag directly bound to the TYR112 residue of NDRG1, stabilizing its expression and preventing its degradation. This interaction upregulated NDRG1, which in turn promoted its interaction with the E3 ubiquitin ligase HECW1, facilitating the ubiquitination and degradation of NRG2 at lysine 223 (K223). By targeting the NDRG1-NRG2-HECW1 pathway, Mag uniquely inhibited autophagy and restored the sensitivity of HCC827AR cells to EGFR TKIs, thereby reversing resistance. In vivo, the combined treatment with Mag (30 mg· kg−1 ·d−1, i.g.) and Afa (10 mg· kg−1 ·d−1, i.g.) significantly reduced tumor growth in patient-derived xenografts without inducing major toxicity. This study unravels the intricate role of NDRG1 in modulating NRG2 via HECW1. The results not only illuminate Mag’s promising potential as an adjunctive therapy to surmount EGFR TKI resistance, but also underscore the significant therapeutic potential of targeting the NDRG1-NRG2-HECW1 pathway as a novel strategy to reverse EGFR TKI resistance in NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NRG2 is related to EGFR TKI resistance in NSCLC.
Fig. 2: NRG2 was inhibited by Mag in EGFR TKI resistance.
Fig. 3: NDRG1 expression was negatively correlated with NRG2.
Fig. 4: Mag enhanced the NDRG1-HECW1-NRG2 complex, leading to the degradation of NRG2 in NSCLC.
Fig. 5: NDRG1 was another key regulator of EGFR TKI resistance in NSCLC.
Fig. 6: Safety and antitumor potential of Mag in PDX of NSCLC.
Fig. 7: Mag targeted the NDRG1/NRG2 axis to overcome EGFR TKI resistance in NSCLC.

Data availability

The RNA microarray datasets generated in this study were deposited into the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database under accession number GSE277007. The RNA-seq and microarray datasets demonstrated in Fig. 3b were downloaded from NCBI’s GEO: GSE121634, GSE193258, and GSE277007.

References

  1. Borgeaud M, Parikh K, Banna GL, Kim F, Olivier T, Le X, et al. Unveiling the landscape of uncommon EGFR mutations in NSCLC—a systematic review. J Thorac Oncol. 2024;19:973–83.

    Article  CAS  PubMed  Google Scholar 

  2. Chen HY, Chen CH, Liao WC, Lin YC, Chen HJ, Hsia TC, et al. Optimal first-line treatment for EGFR mutated NSCLC: a comparative analysis of osimertinib and second-generation EGFR-TKIs. BMC Pulm Med. 2024;24:517.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40:611–25.

    Article  CAS  PubMed  Google Scholar 

  4. Levantini E, Maroni G, Del Re M, Tenen DG. EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol. 2022;85:253–75.

    Article  CAS  PubMed  Google Scholar 

  5. Fu K, Xie F, Wang F, Fu L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J Hematol Oncol. 2022;15:173.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer. 2018;17:38.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cross DAE, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Zhou Q, Liu C, Zhang R, Xing B, Du J, et al. Targeting IL-6/STAT3 signaling abrogates EGFR TKI resistance through inhibiting Beclin-1-dependent autophagy in HNSCC. Cancer Lett. 2024;586:216612.

    Article  CAS  PubMed  Google Scholar 

  9. Cao P, Li Y, Shi R, Yuan Y, Gong H, Zhu G, et al. Combining EGFR-TKI with SAHA overcomes EGFR-TKI-acquired resistance by reducing the protective autophagy in non-small cell lung cancer. Front Chem. 2022;10:837987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, Shu C, Yan Z, Zhang S, Zhang W, Zhao J, et al. Liensinine overcomes EGFR-TKI resistance in lung adenocarcinoma through DRP1-mediated autophagy. Phytomedicine. 2025;140:156593.

    Article  CAS  PubMed  Google Scholar 

  11. Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, et al. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat. 2025;78:101170.

    Article  CAS  PubMed  Google Scholar 

  12. Jain V, Harper SL, Versace AM, Fingerman D, Brown GS, Bhardwaj M, et al. Targeting UGCG overcomes resistance to lysosomal autophagy inhibition. Cancer Discov. 2023;13:454–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo Y, Zheng S, Wu Q, Wu J, Zhou R, Wang C, et al. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy. 2021;17:4083–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 2022;7:196.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bestion E, Costello R, Mezouar S, Halfon P. Autophagy in cancer resistance: new combinatorial strategy for cancer therapy. Leukemia. 2024;38:2289–90.

    Article  PubMed  Google Scholar 

  16. Bharathiraja P, Yadav P, Sajid A, Ambudkar SV, Prasad NR. Natural medicinal compounds target signal transduction pathways to overcome ABC drug efflux transporter-mediated multidrug resistance in cancer. Drug Resist Updat. 2023;71:101004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol. 2022;80:237–55.

    Article  CAS  PubMed  Google Scholar 

  18. Lin CL, Ying TH, Yang SF, Lin CL, Chiou HL, Hsieh YH. Magnolin targeting of the JNK/Sp1/MMP15 signaling axis suppresses cervical cancer microenvironment and metastasis via microbiota modulation. 518 Cancer Lett. 2024;583:216584.

    Article  CAS  Google Scholar 

  19. Bhuia MS, Wilairatana P, Chowdhury R, Rakib AI, Kamli H, Shaikh A, et al. Anticancer potentials of the lignan magnolin: a systematic review. Molecules. 2023;28:3671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mao X, Li W, Chen W, Li Y, Wang Q, Wang X, et al. Exploring and characterizing a novel combination of paeoniflorin and talatizidine for the treatment of rheumatoid arthritis. Pharmacol Res. 2020;153:104658.

    Article  CAS  PubMed  Google Scholar 

  21. Pai MY, Lomenick B, Hwang H, Schiestl R, McBride W, Loo JA, et al. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol Biol. 2015;1263:287–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366:818–22.

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Wang Y, Jiao L, Lin C, Lu C, Zhang K, et al. Protective autophagy decreases osimertinib cytotoxicity through regulation of stem cell-like properties in lung cancer. Cancer Lett. 2019;452:191–202.

    Article  CAS  PubMed  Google Scholar 

  24. Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 2013;154:1269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao Q, You X, Xu L, Wang L, Chen Y. PAQR3 suppresses the growth of non-small cell lung cancer cells via modulation of EGFR-mediated autophagy. Autophagy. 2020;16:1236–47.

    Article  CAS  PubMed  Google Scholar 

  26. Dong RF, Zhu ML, Liu MM, Xu YT, Yuan LL, Bian J, et al. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: from molecular mechanisms to clinical research. Pharmacol Res. 2021;167:105583.

    Article  CAS  PubMed  Google Scholar 

  27. Lu GS, Li M, Xu CX, Wang D. APE1 stimulates EGFR-TKI resistance by activating Akt signaling through a redox-dependent mechanism in lung adenocarcinoma. Cell Death Dis. 2018;9:1111.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou R, Dai J, Zhou R, Wang M, Deng X, Zhuo Q, et al. Prognostic biomarker NRG2 correlates with autophagy and epithelial‑mesenchymal transition in breast cancer. Oncol Lett. 2024;27:277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jaiswal A, Negi M, Choi EH, Kaushik NK, Kaushik N. Upstream-binding protein-1 promotes breast tumorigenesis by inducing NRG2-mediated metastasis, plasticity, and macrophage polarization. Int J Biol Macromol. 2025;307:141915.

    Article  CAS  PubMed  Google Scholar 

  30. Di Y, Zhao L, Zhang L, Chen L. Identification of autophagy-related biomarkers in prostate cancer prognosis. Hum Cell. 2025;38:120.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao WJ, Yi SJ, Ou GY, Qiao XY. Neuregulin 2 (NRG2) is expressed in gliomas and promotes migration of human glioma cells. Folia Neuropathol. 2021;59:189–97.

    Article  PubMed  Google Scholar 

  32. Nakano N, Kanekiyo K, Nakagawa T, Asahi M, Ide C. NTAK/neuregulin-2 secreted by astrocytes promotes survival and neurite outgrowth of neurons via ErbB3. Neurosci Lett. 2016;622:88–94.

    Article  CAS  PubMed  Google Scholar 

  33. Yang Y, Liu L, Tian Y, Gu M, Wang Y, Ashrafizadeh M, et al. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett. 2024;587:216659.

    Article  CAS  PubMed  Google Scholar 

  34. Sun Y, Liu X, Tong H, Yin H, Li T, Zhu J, et al. SIRT1 promotes cisplatin resistance in bladder cancer via Beclin1 deacetylation-mediated autophagy. Cancers. 2023;16:125.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fei Y, Yan X, Liang M, Zhou S, Xu D, Li L, et al. Lysosomal gene ATP6AP1 promotes doxorubicin resistance via up-regulating autophagic flux in breast cancer. Cancer Cell Int. 2024;24:394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cai Y, Zheng H, Xu D, Xie J, Wang W, Liu Z, et al. M6A RNA methylation-mediated dysregulation of AGAP2-AS1 promotes trastuzumab resistance of breast cancer. Pharmacology. 2024;109:282–92.

    Article  CAS  PubMed  Google Scholar 

  37. Elshazly AM, Elzahed AA, Gewirtz DA. Evidence for cytoprotective autophagy in response to HER2-targeted monoclonal antibodies. J Pharmacol Exp Ther. 2025;392:100007.

    Article  PubMed  Google Scholar 

  38. Singh S, Sadhukhan S, Sonawane A. 20 years since the approval of first EGFR-TKI, gefitinib: insight and foresight. Biochim Biophys Acta Rev Cancer. 2023;1878:188967.

    Article  CAS  PubMed  Google Scholar 

  39. Kohsaka S, Hayashi T, Nagano M, Ueno T, Kojima S, Kawazu M, et al. Identification of novel CD74-NRG2α fusion from comprehensive profiling of lung adenocarcinoma in Japanese never or light smokers. J Thorac Oncol. 2020;15:948–61.

    Article  CAS  PubMed  Google Scholar 

  40. Xu C, Wang Q, Wang D, Wang W, Fang W, Li Z, et al. Expert consensus on the diagnosis and treatment of NRG1/2 gene fusion solid tumors. Glob Med Genet. 2024;11:86–99.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (Grant no. 82374095), Shaanxi Province Science Fund for Distinguished Young Scholars (2023-JC-JQ-59), the Shaanxi Province Science and Technology Development Plan Project (2022ZDLSF05-05).

Author information

Authors and Affiliations

Authors

Contributions

QW: Methodology, Investigation, Validation, Original draft Writing. QS, MZ, TFY, and WJT: Investigation, Review & editing. YH: Methodology, Validation. JYR: Conceptualization, Formal analysis. XHP: Validation, Formal analysis. SYZ: Investigation, Formal analysis. YMZ: Conceptualization, Funding acquisition, Supervision, Review & editing.

Corresponding author

Correspondence to Yan-min Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This human study was approved by the Shanghai Zhuoli Biotech Company Review Board (ZLL-15-01) and performed in accordance with the Declaration of Helsinki. The animal experimental procedures were approved by the Biomedical Ethics Committee of the Xi’an Jiaotong University Health Science Center (approval number: XJTUAE2023-2214).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Su, Q., Zhu, M. et al. Magnolin overcomes EGFR TKI resistance in NSCLC by modulation of NDRG1-NRG2-HECW1 pathway. Acta Pharmacol Sin (2025). https://doi.org/10.1038/s41401-025-01670-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41401-025-01670-z

Keywords

Search

Quick links