Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of recent thymic emigrants in pediatric recipients of allogeneic hematopoetic stem cell transplantation

Abstract

After allogeneic hematopoietic stem cell transplantation (allo-HSCT), the recurrence of recent thymic emigrants (RTE) and self-tolerant T cells indicate normalized thymic function. From 2008 to 2019, we retrospectively analyzed the RTE-reconstitution rate and the minimal time to reach normal age-specific first percentiles for CD31+CD45RA+CD4+T cells in 199 pediatric patients after allo-HSCT for various malignant and non-malignant diseases. The impact of clinically significant graft-versus-host disease (GvHD), age at transplantation, underlying disease and cumulative area under the curve of busulfan on RTE-reemergence was assessed in multivariable longitudinal analysis. RTE-reconstitution (coefficient −0.24, 95% CI −0.33 to −0.14, p < 0.001) was slowed down by GvHD and the time to reach P1 was significantly longer (Event Time Ratio 1.49, 95% CI 1.25 to 1.78, p < 0.001). Older age at transplantation was also associated with a slower RTE-reconstitution (coefficient −0.028, 95% CI −0.04 to −0.02, p < 0.001) and time to reach P1 was significantly longer (Event Time Ratio 1.03, 95% CI 1.02 to 1.05, p < 0.001). RTE-reconstitution velocity was not influenced by underlying disease or cumulative busulfan exposure. In summary, duration until thymic reactivation was independent of both conditioning intensity and underlying disease and was negatively influenced by older age and GvHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influence of acute graft-versus-host disease (GvHD) on recent thymic emigrants (RTE) re-emergence.
Fig. 2: Influence of underlying disease on recent thymic emigrants (RTE) re-emergence.

Similar content being viewed by others

Code availability

The R code is available on request from corresponding author.

References

  1. de Koning C, Plantinga M, Besseling P, Boelens JJ, Nierkens S. Immune reconstitution after allogeneic hematopoietic cell transplantation in children. Biol Blood Marrow Transpl. 2016;22:195–206.

    Article  CAS  Google Scholar 

  2. Gress RE, Emerson SG, Drobyski WR. Immune reconstitution: how it should work, what’s broken, and why it matters. Biol Blood Marrow Transpl. 2010;16:S133–7.

    Article  CAS  Google Scholar 

  3. Dvorak CC, Long-Boyle J, Dara J, Melton A, Shimano KA, Huang JN, et al. Low Exposure Busulfan Conditioning to Achieve Sufficient Multilineage Chimerism in Patients with Severe Combined Immunodeficiency. Biol Blood Marrow Transpl. 2019;25:1355–62.

    Article  CAS  Google Scholar 

  4. Goldberg JD, Zheng J, Ratan R, Small TN, Lai K-C, Boulad F, et al. Early recovery of T-cell function predicts improved survival after T-cell depleted allogeneic transplant. Leuk Lymphoma. 2017;58:1859–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duinhouwer LE, Beije N, van der Holt B, Rijken-Schelen A, Lamers CH, Somers J, et al. Impaired thymopoiesis predicts for a high risk of severe infections after reduced intensity conditioning without anti-thymocyte globulin in double umbilical cord blood transplantation. Bone Marrow Transpl. 2018;53:673–82.

    Article  CAS  Google Scholar 

  6. de Koning C, Prockop S, van Roessel I, Kernan N, Klein E, Langenhorst J, et al. CD4+ T-cell reconstitution predicts survival outcomes after acute graft-versus-host-disease: a dual-center validation. Blood. 2021;137:848–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Berger M, Figari O, Bruno B, Raiola A, Dominietto A, Fiorone M, et al. Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality. Bone Marrow Transplant. 2008;41:55–62.

    Article  CAS  PubMed  Google Scholar 

  8. Dekker L, de Koning C, Lindemans C, Nierkens S. Reconstitution of T cell subsets following allogeneic hematopoietic cell transplantation. Cancers. 2020;12:1974.

    Article  CAS  PubMed Central  Google Scholar 

  9. Moutuou MM, Pagé G, Zaid I, Lesage S, Guimond M. Restoring T cell homeostasis after allogeneic stem cell transplantation; principal limitations and future challenges. Front Immunol. 2018;9:1237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mellgren K, Nierop AFM, Abrahamsson J. Use of multivariate immune reconstitution patterns to describe immune reconstitution after allogeneic stem cell transplantation in children. Biol Blood Marrow Transpl. 2019;25:2045–53.

    Article  CAS  Google Scholar 

  11. Flinn AM, Gennery AR. Treatment of Pediatric Acute Graft-versus-Host Disease—Lessons from Primary Immunodeficiency? Front Immunol. 2017;8. https://doi.org/10.3389/fimmu.2017.00328.

  12. Ringhoffer S, Rojewski M, Dohner H, Bunjes D, Ringhoffer M. T-cell reconstitution after allogeneic stem cell transplantation: assessment by measurement of the sjTREC/ TREC ratio and thymic naive T cells. Haematologica. 2013;98:1600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bains I, Thiebaut R, Yates AJ, Callard R. Quantifying thymic export: combining models of naive T cell proliferation and TCR excision circle dynamics gives an explicit measure of thymic output. J Immunol. 2009;183:4329–36.

    Article  CAS  PubMed  Google Scholar 

  14. Junge S, Kloeckener-Gruissem B, Zufferey R, Keisker A, Salgo B, Fauchere J-C, et al. Correlation between recent thymic emigrants and CD31+ (PECAM-1) CD4+ T cells in normal individuals during aging and in lymphopenic children. Eur J Immunol. 2007;37:3270–80.

    Article  CAS  PubMed  Google Scholar 

  15. Kohler S, Wagner U, Pierer M, Kimmig S, Oppmann B, Möwes B, et al. Post-thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults. Eur J Immunol. 2005;35:1987–94.

    Article  CAS  PubMed  Google Scholar 

  16. Satwani P, Cooper N, Rao K, Veys P, Amrolia P. Reduced intensity conditioning and allogeneic stem cell transplantation in childhood malignant and nonmalignant diseases. Bone Marrow Transpl. 2008;41:173–82.

    Article  CAS  Google Scholar 

  17. Jiménez M, Martínez C, Ercilla G, Carreras E, Urbano-Ispízua Á, Aymerich M, et al. Reduced-intensity conditioning regimen preserves thymic function in the early period after hematopoietic stem cell transplantation. Exp Hematol. 2005;33:1240–8.

    Article  PubMed  CAS  Google Scholar 

  18. Larosa F, Marmier C, Robinet E, Ferrand C, Saas P, Deconinck E, et al. Peripheral T-cell expansion and low infection rate after reduced-intensity conditioning and allogeneic blood stem cell transplantation. Bone Marrow Transpl. 2005;35:859–68.

    Article  CAS  Google Scholar 

  19. Lum SH, Hoenig M, Gennery AR, Slatter MA. Conditioning regimens for hematopoietic cell transplantation in primary immunodeficiency. Curr Allergy Asthma Rep. 2019;19:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Flinn AM, Roberts CF, Slatter MA, Skinner R, Robson H, Lawrence J, et al. Thymopoiesis following HSCT; a retrospective review comparing interventions for aGVHD in a pediatric cohort. Clin Immunol. 2018;193:33–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hauri-Hohl MM, Keller MP, Gill J, Hafen K, Pachlatko E, Boulay T, et al. Donor T-cell alloreactivity against host thymic epithelium limits T-cell development after bone marrow transplantation. Blood. 2007;109:4080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felber M, Steward CG, Kentouche K, Fasth A, Wynn RF, Zeilhofer U, et al. Targeted busulfan-based reduced-intensity conditioning and HLA-matched HSCT cure hemophagocytic lymphohistiocytosis. Blood Adv. 2020;4:1998–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Güngör T, Teira P, Slatter M, Stussi G, Stepensky P, Moshous D, et al. Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study. Lancet. 2014;383:436–48.

    Article  PubMed  CAS  Google Scholar 

  24. Dougoud ST Age-specific percentiles of CD31 and CD127 receptor expression on variable T cell subsets in 74 healthy children from birth until adolescence. 2012.https://www.zora.uzh.ch/id/eprint/73955/ (accessed 7 April 2019).

  25. Eberle P, Berger C, Junge S, Dougoud S, Büchel EV, Riegel M, et al. Persistent low thymic activity and non-cardiac mortality in children with chromosome 22q11·2 microdeletion and partial DiGeorge syndrome. Clin Exp Immunol. 2009;155:189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Güngör T, Rufibach K, Dougoud S, Hauri-Hohl M, Oberholzer-Koechli S. Restoration and maintenance of naive CD31+ and CD31-CD45RA+RO-CD4+T-cell compartments after paediatric allogeneic haematopoietic stem cell transplantation. Physicians Abstracts. Bone Marrow Transplant 46, S35 (2011).

  27. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 diagnosis and staging working group report. Biol Blood Marrow Transpl. 2015;21:389–401.e1.

    Article  Google Scholar 

  28. Diggle P, Heagerty P, Liang K-Y, Zeger S. Analysis of Longitudinal Data. Second Edition. Oxford University Press: Oxford, New York, 2013.

  29. Heinze G, Wallisch C, Dunkler D. Variable selection – A review and recommendations for the practicing statistician. Biom J. 2018;60:431–49.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carroll KJ. On the use and utility of the Weibull model in the analysis of survival data. Control Clin Trials. 2003;24:682–701.

    Article  PubMed  Google Scholar 

  31. Köchli Oberholzer S. Short- and long-term immune reconstitution of naive CD31+ and CD31-CD45RA+RO-CD4+ T-cells in children after hematopoietic stem-cell transplantation (HSCT). 2012.https://www.zora.uzh.ch/id/eprint/75704/ (accessed 7 Apr2019).

  32. Pinheiro, et al. nlme: Linear and Nonlinear Mixed Effects Models. 2020. https://CRAN.R-project.org/package=nlme (accessed 5 December 2020).

  33. Therneau TM. (until 2009) TL original S->R port and R maintainer, Elizabeth A, Cynthia C. survival: Survival Analysis. 2021 https://CRAN.R-project.org/package=survival (accessed 9 April 2021).

  34. Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, et al. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. 2020.https://CRAN.R-project.org/package=ggplot2 (accessed 5 December 2020).

  35. Sarkar D Lattice: Multivariate Data Visualization with R. Springer-Verlag: New York, 2008 https://doi.org/10.1007/978-0-387-75969-2.

  36. Devine SM, Adkins DR, Khoury H, Brown RA, Vij R, Blum W, et al. Recent advances in allogeneic hematopoietic stem-cell transplantation. J Lab Clin Med. 2003;141:7–32.

    Article  CAS  PubMed  Google Scholar 

  37. Fallen PR, McGreavey L, Madrigal JA, Potter M, Ethell M, Prentice HG, et al. Factors affecting reconstitution of the T cell compartment in allogeneic haematopoietic cell transplant recipients. Bone Marrow Transpl. 2003;32:1001–14.

    Article  CAS  Google Scholar 

  38. Geddes M, Storek J. Immune reconstitution following hematopoietic stem-cell transplantation. Best Pr Res Clin Haematol. 2007;20:329–48.

    Article  CAS  Google Scholar 

  39. Admiraal R, Lindemans CA, van Kesteren C, Bierings MB, Versluijs AB, Nierkens S, et al. Excellent T-cell reconstitution and survival depend on low ATG exposure after pediatric cord blood transplantation. Blood. 2016;128:2734–41.

    Article  CAS  PubMed  Google Scholar 

  40. Clave E, Busson M, Douay C, Peffault de Latour R, Berrou J, Rabian C, et al. Acute graft-versus-host disease transiently impairs thymic output in young patients after allogeneic hematopoietic stem cell transplantation. Blood. 2009;113:6477–84.

    Article  CAS  PubMed  Google Scholar 

  41. Clave E, Lisini D, Douay C, Giorgiani G, Busson M, Zecca M, et al. Thymic function recovery after unrelated donor cord blood or T-cell depleted HLA-haploidentical stem cell transplantation correlates with leukemia relapse. Front Immunol. 2013;4. https://doi.org/10.3389/fimmu.2013.00054.

  42. Prelog M, Keller M, Geiger R, Brandstätter A, Würzner R, Schweigmann U, et al. Thymectomy in early childhood: significant alterations of the CD4+CD45RA+CD62L+ T cell compartment in later life. Clin Immunol. 2009;130:123–32.

    Article  CAS  PubMed  Google Scholar 

  43. Toubert A, Glauzy S, Douay C, Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012;79:83–9.

    Article  CAS  PubMed  Google Scholar 

  44. Toubert A, Einsele H. How to improve immune reconstitution in allogeneic hematopoietic stem cell transplantation? Frontiers SA Media, 2015 https://doi.org/10.3389/978-2-88919-491-9.

  45. Bejanyan N, Brunstein CG, Cao Q, Lazaryan A, Luo X, Curtsinger J, et al. Delayed immune reconstitution after allogeneic transplantation increases the risks of mortality and chronic GVHD. Blood Adv. 2018;2:909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boelens JJ, Hosszu KK, Nierkens S. Immune monitoring after allogeneic hematopoietic cell transplantation: toward practical guidelines and standardization. Front Pediatr. 2020;8:454.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Neven B, Leroy S, Decaluwe H, Le Deist F, Picard C, Moshous D, et al. Long-term outcome after hematopoietic stem cell transplantation of a single-center cohort of 90 patients with severe combined immunodeficiency. Blood. 2009;113:4114–24.

    Article  CAS  PubMed  Google Scholar 

  48. Kohler S, Thiel A. Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood. 2009;113:769–74.

    Article  CAS  PubMed  Google Scholar 

  49. van den Broek T, Borghans JAM, van Wijk F. The full spectrum of human naive T cells. Nat Rev Immunol. 2018;18:363–73.

    Article  PubMed  CAS  Google Scholar 

  50. Rajasekar R, Mathews V, Lakshmi KM, George B, Viswabandya A, Chandy M, et al. Cellular immune reconstitution and its impact on clinical outcome in children with β Thalassemia major undergoing a matched related myeloablative allogeneic bone marrow transplant. Biol Blood Marrow Transpl. 2009;15:597–609.

    Article  CAS  Google Scholar 

  51. Eyrich M, Wollny G, Tzaribaschev N, Dietz K, Brügger D, Bader P, et al. Onset of thymic recovery and plateau of thymic output are differentially regulated after stem cell transplantation in children. Biol Blood Marrow Transpl. 2005;11:194–205.

    Article  Google Scholar 

  52. Wiegering V, Eyrich M, Winkler B, Schlegel PG. Comparison of immune reconstitution after allogeneic vs. autologous stem cell transplantation in 182 pediatric recipients. Pediatr Hematol Oncol J. 2017;2:2–6.

    Article  Google Scholar 

  53. Bhatt ST, Bednarski JJ, Berg J, Trinkaus K, Murray L, Hayashi R, et al. Immune reconstitution and infection patterns after early alemtuzumab and reduced intensity transplantation for nonmalignant disorders in pediatric patients. Biol Blood Marrow Transpl. 2019;25:556–61.

    Article  CAS  Google Scholar 

  54. Lankester AC, Albert MH, Booth C, Gennery AR, Güngör T, Hönig M, et al. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transpl. 2021;56:2052–62.

    Article  CAS  Google Scholar 

  55. Peters C, Dalle J-H, Locatelli F, Poetschger U, Sedlacek P, Buechner J, et al. Total body irradiation or chemotherapy conditioning in childhood ALL: a multinational, randomized, noninferiority phase III study. J Clin Oncol. 2021;39:295–307.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Maja Rutishauser, senior laboratory technician, who played a major role implementing the flowcytometry analyses and the percentiles for CD4+CD31+ T-cells into the routine laboratory diagnostics at University Children’s Hospital Zürich, Switzerland.

Funding

DD received a grant for this study from the Children’s Research Center, University Children’s Hospital Zürich, University of Zürich, Zürich, Switzerland. MHH is supported by the Prof. Max Cloëtta Foundation.

Author information

Authors and Affiliations

Authors

Contributions

DD, TG, MH, SO and SD conceived and designed the study, analyzed the data and wrote the manuscript. KP and LH performed the statistical analysis and reviewed and edited the manuscript.

Corresponding author

Correspondence to Daniel Drozdov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Ethical approval was granted by the Ethics Committee of Canton Zürich, Switzerland (2017-02040). Informed consent was obtained from all study participants transplanted after 01.01.2014. For patients transplanted before 01.01.2014 the informed consent was waived by the Ethics Committee of Canton Zürich, Switzerland.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, D., Petermann, K., Dougoud, S. et al. Dynamics of recent thymic emigrants in pediatric recipients of allogeneic hematopoetic stem cell transplantation. Bone Marrow Transplant 57, 620–626 (2022). https://doi.org/10.1038/s41409-022-01594-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41409-022-01594-w

This article is cited by

Search

Quick links