Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular and Molecular Biology

The dark side of synaptic proteins in tumours

Abstract

Research in the past decade has uncovered the essential role of the nervous system in the tumour microenvironment. The recent advances in cancer neuroscience, especially the discovery of neuron–tumour synaptic/perisynaptic structures, have revealed the dark side of synaptic proteins in the progression of brain tumours. Here, we provide an overview of the synaptic proteins expressed by tumour cells and analyse their molecular functions and organisation by comparing them with neuronal synaptic proteins. We focus on the studies of neuroligin-3, the glutamate receptors AMPAR and NMDAR and the synaptic scaffold protein DLGAP1, for their newly discovered regulatory role in the proliferation and progression of tumours. Progress in cancer neuroscience has brought novel insights into the treatment of cancers. In the last part of this review, we discuss the therapeutical strategies targeting synaptic proteins and the current challenges and possible toolkits regarding their clinical application in cancer treatment. Our understanding of cancer neuroscience is still in its infancy; deeper investigation of how tumour cells co-opt synaptic signaling will help fulfil the therapeutical potential of the synaptic proteins as promising anti-tumour targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactions between the nervous system and tumours.
Fig. 2: An overview of synaptic proteins expressed in glioma cells.
Fig. 3: Extracellular soluble neuroligin-3 acts as a mitogen to promote glioma cell proliferation.

Similar content being viewed by others

Data availability

The statistical data for Fig. 2a are available upon request.

References

  1. Zahalka AH, Frenette PS. Nerves in cancer. Nat Rev Cancer. 2020;20:143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Monje M, Borniger JC, D'Silva NJ, Deneen B, Dirks PB, Fattahi F, et al. Roadmap for the emerging field of cancer neuroscience. Cell. 2020;181:219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Demir IE, Reyes CM, Alrawashdeh W, Ceyhan GO, Deborde S, Friess H, et al. Future directions in preclinical and translational cancer neuroscience research. Nat Cancer. 2021;1:1027–31.

    Article  PubMed  Google Scholar 

  4. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell. 2014;156:1002–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Banh RS, Biancur DE, Yamamoto K, Sohn ASW, Walters B, Kuljanin M, et al. Neurons release serine to support mRNA translation in pancreatic. Cancer Cell. 2020;183:1202–18. e1225

    CAS  Google Scholar 

  6. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31:21–34.

    Article  CAS  PubMed  Google Scholar 

  7. Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573:539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 2019;573:532–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rzeski W, Turski L, Ikonomidou C. Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA. 2001;98:6372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yi H, Talmon G, Wang J. Glutamate in cancers: from metabolism to signaling. J Biomed Res. 2019;34:260–70.

    PubMed  Google Scholar 

  11. Li DL, Liu JJ, Liu BH, Hu H, Sun L, Miao Y, et al. Acetylcholine inhibits hypoxia-induced tumor necrosis factor-alpha production via regulation of MAPKs phosphorylation in cardiomyocytes. J Cell Physiol. 2011;226:1052–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chen J, Cheuk IWY, Shin VY, Kwong A. Acetylcholine receptors: key players in cancer development. Surg Oncol. 2019;31:46–53.

    Article  PubMed  Google Scholar 

  13. Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature. 2021;594:277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell. 2015;161:803–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature. 2017;549:533–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zahalka AH, Arnal-Estape A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science. 2017;358:321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.

    Article  PubMed  Google Scholar 

  18. Faulkner S, Jobling P, March B, Jiang CC, Hondermarck H. Tumor neurobiology and the war of nerves in cancer. Cancer Discov. 2019;9:702–10.

    Article  CAS  PubMed  Google Scholar 

  19. Zeng Q, Michael I, Zhang P, Saghafinia S, Knott G, Jiao W, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature. 2019;573:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borniger JC, Walker Ii,WH, Surbhi, Emmer KM, Zhang N, Zalenski AA, et al. A role for hypocretin/orexin in metabolic and sleep abnormalities in a mouse model of non-metastatic breast cancer. Cell Metab. 2018;28:118–29. e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu K, Lin CJ, Hatcher A, Lozzi B, Kong K, Huang-Hobbs E, et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578:166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mauffrey P, Tchitchek N, Barroca V, Bemelmans AP, Firlej V, Allory Y, et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature. 2019;569:672–8.

    Article  CAS  PubMed  Google Scholar 

  23. Montgomery MK, Kim SH, Dovas A, Zhao HT, Goldberg AR, Xu W, et al. Glioma-induced alterations in neuronal activity and neurovascular coupling during disease progression. Cell Rep. 2020;31:107500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN, et al. Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell. 2019;176:43–55. e13

    Article  CAS  PubMed  Google Scholar 

  25. Pease-Raissi SE, Pazyra-Murphy MF, Li Y, Wachter F, Fukuda Y, Fenstermacher SJ, et al. Paclitaxel reduces axonal Bclw to initiate IP3R1-dependent axon degeneration. Neuron. 2017;96:373–86. e376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung E, Alfonso J, Monyer H, Wick W, Winkler F. Neuronal signatures in cancer. Int J Cancer. 2020;147:3281–91.

    Article  CAS  PubMed  Google Scholar 

  27. Monje M. Synaptic communication in brain cancer. Cancer Res. 2020;80:2979–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bergles DE, Roberts JD, Somogyi P, Jahr CE. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature. 2000;405:187–91.

    Article  CAS  PubMed  Google Scholar 

  29. Karadottir R, Cavelier P, Bergersen LH, Attwell D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438:1162–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron. 2004;42:535–52.

    Article  CAS  PubMed  Google Scholar 

  31. Kougioumtzidou E, Shimizu T, Hamilton NB, Tohyama K, Sprengel R, Monyer H, et al. Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. elife. 2017;6:e28080.

  32. Micu I, Plemel JR, Caprariello AV, Nave KA, Stys PK. Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nat Rev Neurosci. 2018;19:49–58.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science. 2016;352:1326–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Zhang W, Yang H, Howrigan DP, Wilkinson B, Souaiaia T, et al. Spatiotemporal profile of postsynaptic interactomes integrates components of complex brain disorders. Nat Neurosci. 2017;20:1150–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bayes A, Collins MO, Croning MD, van de Lagemaat LN, Choudhary JS, Grant SG. Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS ONE. 2012;7:e46683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355:1253–61.

    Article  CAS  PubMed  Google Scholar 

  38. Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, et al. beta2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;33:75–90. e77

    Article  CAS  PubMed  Google Scholar 

  39. Li L, Zeng Q, Bhutkar A, Galván J, Karamitopoulou E, Noordermeer D, et al. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell. 2018;33:736–751.e735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Budreck EC, Scheiffele P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci. 2007;26:1738–48.

    Article  PubMed  Google Scholar 

  41. Elegheert J, Cvetkovska V, Clayton AJ, Heroven C, Vennekens KM, Smukowski SN, et al. Structural mechanism for modulation of synaptic neuroligin-neurexin signaling by MDGA proteins. Neuron. 2017;96:242–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li Z, Gao W, Fei Y, Gao P, Xie Q, Xie J, et al. NLGN3 promotes neuroblastoma cell proliferation and growth through activating PI3K/AKT pathway. Eur J Pharmacol. 2019;857:172423.

    Article  CAS  PubMed  Google Scholar 

  43. Liu R, Qin XP, Zhuang Y, Zhang Y, Liao HB, Tang JC, et al. Glioblastoma recurrence correlates with NLGN3 levels. Cancer Med. 2018. https://doi.org/10.1002/cam4.1538.

  44. Derks J, Wesseling P, Carbo EWS, Hillebrand A, van Dellen E, de Witt Hamer PC, et al. Oscillatory brain activity associates with neuroligin-3 expression and predicts progression free survival in patients with diffuse glioma. J Neurooncol. 2018;140:403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol. 2007;23:613–43.

    Article  CAS  PubMed  Google Scholar 

  46. Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science. 1991;252:851–3.

    Article  CAS  PubMed  Google Scholar 

  47. Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002;25:103–26.

    Article  CAS  PubMed  Google Scholar 

  48. Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron. 2018;100:314–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maas S, Patt S, Schrey M, Rich A. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci USA. 2001;98:14687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, et al. Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med. 2002;8:971–8.

    Article  CAS  PubMed  Google Scholar 

  51. Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, et al. Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci. 2007;27:7987–8001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H. Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res. 2007;67:9463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramaswamy P, Dalavaikodihalli Nanjaiah N, Prasad C, Goswami K. Transcriptional modulation of calcium-permeable AMPA receptor subunits in glioblastoma by MEK-ERK1/2 inhibitors and their role in invasion. Cell Biol Int. 2020;44:830–7.

    Article  CAS  PubMed  Google Scholar 

  54. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci. 2000;3:661–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hetman M, Kharebava G. Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem. 2006;6:787–99.

    Article  CAS  PubMed  Google Scholar 

  56. Dore K, Stein IS, Brock JA, Castillo PE, Zito K, Sjostrom PJ. Unconventional NMDA receptor signaling. J Neurosci. 2017;37:10800–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11:682–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frank RA, Komiyama NH, Ryan TJ, Zhu F, O'Dell TJ, Grant SG. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abdul M, Hoosein N. N-methyl-D-aspartate receptor in human prostate cancer. J Membr Biol. 2005;205:125–8.

    Article  CAS  PubMed  Google Scholar 

  60. Watanabe K, Kanno T, Oshima T, Miwa H, Tashiro C, Nishizaki T. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells. Biochem Biophys Res Commun. 2008;367:487–90.

    Article  CAS  PubMed  Google Scholar 

  61. North WG, Gao G, Memoli VA, Pang RH, Lynch L. Breast cancer expresses functional NMDA receptors. Breast Cancer Res Treat. 2010;122:307–14.

    Article  CAS  PubMed  Google Scholar 

  62. North WG, Gao G, Jensen A, Memoli VA, Du J. NMDA receptors are expressed by small-cell lung cancer and are potential targets for effective treatment. Clin Pharmacol. 2010;2:31–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Stepulak A, Luksch H, Uckermann O, Sifringer M, Rzeski W, Polberg K, et al. Glutamate receptors in laryngeal cancer cells. Anticancer Res. 2011;31:565–73.

    CAS  PubMed  Google Scholar 

  64. Li L, Hanahan D. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell. 2013;153:86–100.

    Article  CAS  PubMed  Google Scholar 

  65. Muller-Langle A, Lutz H, Hehlgans S, Rodel F, Rau K, Laube B. NMDA Receptor-Mediated signaling pathways enhance radiation resistance, survival and migration in glioblastoma cells—a potential target for adjuvant radiotherapy. Cancers (Basel). 2019;11:503–18.

    Article  Google Scholar 

  66. Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, et al. NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA. 2005;102:15605–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lutz H, Nguyen TA, Joswig J, Rau K, Laube B. NMDA receptor signaling mediates cFos expression via Top2beta-induced DSBs in glioblastoma cells. Cancers (Basel). 2019;11:306.

    Article  CAS  PubMed Central  Google Scholar 

  68. Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S, Seo J, et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell. 2015;161:1592–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B, et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet. 2010;42:668–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramaswamy P, Aditi Devi N, Hurmath Fathima K, Dalavaikodihalli Nanjaiah N. Activation of NMDA receptor of glutamate influences MMP-2 activity and proliferation of glioma cells. Neurol Sci. 2014;35:823–9.

    Article  PubMed  Google Scholar 

  71. Nandakumar DN, Ramaswamy P, Prasad C, Srinivas D, Goswami K. Glioblastoma invasion and NMDA receptors: a novel prospect. Physiol Int. 2019;106:250–60.

    Article  CAS  PubMed  Google Scholar 

  72. Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016;533:493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Coba MP, Ramaker MJ, Ho EV, Thompson SL, Komiyama NH, Grant SGN, et al. Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability. Sci Rep. 2018;8:2281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ting JT, Peca J, Feng G. Functional consequences of mutations in postsynaptic scaffolding proteins and relevance to psychiatric disorders. Annu Rev Neurosci. 2012;35:49–71.

    Article  CAS  PubMed  Google Scholar 

  75. Li J, Shi M, Ma Z, Zhao S, Euskirchen G, Ziskin J, et al. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders. Mol Syst Biol. 2014;10:774.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Seto M, Weiner RL, Dumitrescu L, Hohman TJ. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol Neurodegener. 2021;16:29.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chun MG, Mao JH, Chiu CW, Balmain A, Hanahan D. Polymorphic genetic control of tumor invasion in a mouse model of pancreatic neuroendocrine carcinogenesis. Proc Natl Acad Sci USA. 2010;107:17268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li J, Wilkinson B, Clementel VA, Hou J, O'Dell TJ, Coba MP. Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome. Sci Signal. 2016;9:rs8.

    Article  PubMed  Google Scholar 

  79. Friedman S, Levy R, Garrett W, Doval D, Bondarde S, Sahoo T, et al. Clinical Benefit of INCB7839, a Potent and Selective Inhibitor of ADAM10 and ADAM17, in Combination with Trastuzumab in Metastatic HER2 Positive Breast Cancer Patients. In: Thirty-Second Annual CTRC‐AACR San Antonio Breast Cancer Symposium 69 Ch. 5056. San Antonio: American Association for Cancer Research; 2009.

  80. Izumoto S, Miyauchi M, Tasaki T, Okuda T, Nakagawa N, Nakano N, et al. Seizures and tumor progression in glioma patients with uncontrollable epilepsy treated with perampanel. Anticancer Res. 2018;38:4361–6.

    Article  CAS  PubMed  Google Scholar 

  81. Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1:383–6.

    Article  CAS  PubMed  Google Scholar 

  82. Takano T, Soderling SH. Tripartite synaptomics: cell-surface proximity labeling in vivo. Neurosci Res. 2021;173:14–21.

    Article  CAS  PubMed  Google Scholar 

  83. Cizeron M, Qiu Z, Koniaris B, Gokhale R, Komiyama NH, Fransen E, et al. A brainwide atlas of synapses across the mouse life span. Science. 2020;369:270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ngai J. BRAIN 2.0: transforming neuroscience. Cell. 2022;185:4–8.

    Article  CAS  PubMed  Google Scholar 

  85. Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba MP, et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron. 2019;103:217–34. e214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. 2017;355:eaai8478.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science. 2018;360:331–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the support from the International Research Centre for Non-coding RNAs and Translational Medicine, Qingdao.

Funding

This work was supported by the National Natural Science Foundation of China (No. 32101020 and 91849209), Natural Science Foundation of Shandong Province (CN) (No. ZR2020MC071 and ZR2019LZL001) and the People's Livelihood Science and Technology Project of Qingdao (CN) (No. 20-3-4-41-nsh).

Author information

Authors and Affiliations

Contributions

JL conceived the manuscript, JL, YX and HZ wrote the manuscript, YX and DW drew the figures, DW, YW and PL revised the manuscript.

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, Y., Zhu, H. et al. The dark side of synaptic proteins in tumours. Br J Cancer 127, 1184–1192 (2022). https://doi.org/10.1038/s41416-022-01863-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-022-01863-x

This article is cited by

Search

Quick links