Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Transcriptomic profiling of blood platelets identifies a diagnostic signature for pancreatic cancer

Abstract

Background

Pancreatic cancer (PaCa) is a deadly malignancy that is often diagnosed at an advanced stage, limiting treatment and reducing survival. There is an urgent need for convenient and accurate diagnostic markers for the early detection of PaCa.

Methods

In this multicenter case-control study, we performed transcriptome analysis of 673 platelet samples from different in-house and public cohorts. RNA sequencing and RT-qPCR were used to discover and validate potential platelet biomarkers. A multi-gene signature was developed using binomial generalized linear model and independently validated in multicenter cohorts.

Results

Two platelet RNAs, SCN1B and MAGOHB, consistently showed robust altered expression patterns between PaCa and healthy controls across cohorts, as confirmed by both RNA sequencing and RT-qPCR. The diagnostic two-RNA signature, PLA2Sig, demonstrated remarkable performance in detecting PaCa, with area under the receiver operating characteristic curve (AUC) values of 0.808, 0.900, 0.783, and 0.830 across multicenter cohorts. Furthermore, PLA2Sig effectively identified resectable stage I&II PaCa cases with an AUC of 0.812. Notably, PLA2Sig outperformed the traditional serum markers carcinoembryonic antigen and carbohydrate antigen 19-9 in distinguishing PaCa from healthy controls, and is complementary to established blood-based screening biomarkers.

Conclusion

These findings provide preliminary but promising evidence for the potential utility of platelet RNAs as an alternative non-invasive liquid biopsy tool for the early detection of PaCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Platelet transcriptome alterations in pancreatic cancer.
Fig. 2: Identification and validation of platelet biomarkers for pancreatic cancer.
Fig. 3: Development and performance evaluation of PLA2Sig in PaCa risk assessment.
Fig. 4: Early detection of PaCa by PLA2Sig in the pooled cohort.
Fig. 5: Optimization of PaCa detection by combining PLA2Sig with conventional tumor markers.
Fig. 6: Evaluation of diagnostic potential using decision curve analysis and calibration curve analysis.

Similar content being viewed by others

Data availability

Raw RNA-seq data generated during this study has been deposited in the Genome Sequence Archive in the National Genomics Data Center [58], China National Center for Bioinformation [59] (https://ngdc.cncb.ac.cn/?lang=en, HRA006016). The raw sequencing data are subject to restricted access in accordance with data privacy laws. All public bulk RNA sequencing data are available from the GEO database under accession numbers GSE183635 and GSE68086.

References

  1. Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22:9694–705.

    PubMed  PubMed Central  Google Scholar 

  2. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA, et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 2009;41:986–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol. 2009;6:699–708.

    PubMed  Google Scholar 

  4. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.

    PubMed  PubMed Central  Google Scholar 

  5. Yang J, Xu R, Wang C, Qiu J, Ren B, You L. Early screening and diagnosis strategies of pancreatic cancer: a comprehensive review. Cancer Commun. 2021;41:1257–74.

    CAS  Google Scholar 

  6. Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326:851–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pereira SP, Oldfield L, Ney A, Hart PA, Keane MG, Pandol SJ, et al. Early detection of pancreatic cancer. Lancet Gastroenterol Hepatol. 2020;5:698–710.

    PubMed  PubMed Central  Google Scholar 

  8. Cameron JM, Sala A, Antoniou G, Brennan PM, Butler HJ, Conn JJA, et al. A spectroscopic liquid biopsy for the earlier detection of multiple cancer types. Br J Cancer. 2023;129:1658–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Laguna JC, Pastor B, Nalda I, Hijazo-Pechero S, Teixido C, Potrony M, et al. Incidental pathogenic germline alterations detected through liquid biopsy in patients with solid tumors: prevalence, clinical utility and implications. Br J Cancer. 2024;130:1420–31.

    PubMed  PubMed Central  Google Scholar 

  10. Ma L, Guo H, Zhao Y, Liu Z, Wang C, Bu J, et al. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct Target Ther. 2024;9:336.

    PubMed  PubMed Central  Google Scholar 

  11. Payne K, Brooks J, Batis N, Khan N, El-Asrag M, Nankivell P, et al. Feasibility of mass cytometry proteomic characterisation of circulating tumour cells in head and neck squamous cell carcinoma for deep phenotyping. Br J Cancer. 2023;129:1590–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thompson JC, Scholes DG, Carpenter EL, Aggarwal C. Molecular response assessment using circulating tumor DNA (ctDNA) in advanced solid tumors. Br J Cancer. 2023;129:1893–902.

    PubMed  PubMed Central  Google Scholar 

  13. Trujillo B, Wu A, Wetterskog D, Attard G. Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer. 2022;127:1394–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan D, Bao S, Zhang Z, Sun J, Zhou M. Leveraging pharmacovigilance data to predict population-scale toxicity profiles of checkpoint inhibitor immunotherapy. Nat Comput Sci. 2024. https://doi.org/10.1038/s43588-024-00748-8.

  15. Zhou M, Bao S, Gong T, Wang Q, Sun J, Li J, et al. The transcriptional landscape and diagnostic potential of long non-coding RNAs in esophageal squamous cell carcinoma. Nat Commun. 2023;14:3799.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W, et al. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol Cancer. 2022;21:25.

    PubMed  PubMed Central  Google Scholar 

  17. De Rubis G, Rajeev Krishnan S, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharm Sci. 2019;40:172–86.

    PubMed  Google Scholar 

  18. Corvigno S, Johnson AM, Wong KK, Cho MS, Afshar-Kharghan V, Menter DG, et al. Novel markers for liquid biopsies in cancer management: circulating platelets and extracellular vesicles. Mol Cancer Ther. 2022;21:1067–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mezouar S, Frere C, Darbousset R, Mege D, Crescence L, Dignat-George F, et al. Role of platelets in cancer and cancer-associated thrombosis: experimental and clinical evidences. Thromb Res. 2016;139:65–76.

    CAS  PubMed  Google Scholar 

  20. Wurdinger T, In ‘t Veld S, Best MG. Platelet RNA as Pan-tumor biomarker for cancer detection. Cancer Res. 2020;80:1371–3.

    CAS  PubMed  Google Scholar 

  21. Chan TS, Hwang YY, Gill HS, Cheung CW, Ting CW, Beh P, et al. Increasing incidence of venous thromboembolism due to cancer-associated thrombosis in Hong Kong Chinese. Thromb Res. 2014;134:1157–9.

    CAS  PubMed  Google Scholar 

  22. Walker AJ, Grainge MJ, Card TR, West J, Ranta S, Ludvigsson JF. Venous thromboembolism in children with cancer - a population-based cohort study. Thromb Res. 2014;133:340–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol. 2018;11:125.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK. The platelet lifeline to cancer: challenges and opportunities. Cancer Cell. 2018;33:965–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. In ‘t Veld S, Wurdinger T. Tumor-educated platelets. Blood. 2019;133:2359–64.

    PubMed  Google Scholar 

  26. Suppiah R, Shaheen PE, Elson P, Misbah SA, Wood L, Motzer RJ, et al. Thrombocytosis as a prognostic factor for survival in patients with metastatic renal cell carcinoma. Cancer. 2006;107:1793–800.

    PubMed  Google Scholar 

  27. Lerner DL, Walsh CS, Cass I, Karlan BY, Li AJ. The prognostic significance of thrombocytosis in uterine papillary serous carcinomas. Gynecol Oncol. 2007;104:91–4.

    PubMed  Google Scholar 

  28. Smeda M, Przyborowski K, Stojak M, Chlopicki S. The endothelial barrier and cancer metastasis: Does the protective facet of platelet function matter? Biochem Pharm. 2020;176:113886.

    CAS  PubMed  Google Scholar 

  29. Sierko E, Wojtukiewicz MZ. Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin Thromb Hemost. 2007;33:712–21.

    CAS  PubMed  Google Scholar 

  30. Mohle R, Green D, Moore MA, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA. 1997;94:663–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Best MG, Wesseling P, Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res. 2018;78:3407–12.

    CAS  PubMed  Google Scholar 

  33. Sol N, In ‘t Veld S, Vancura A, Tjerkstra M, Leurs C, Rustenburg F, et al. Tumor-educated platelet RNA for the detection and (pseudo)progression monitoring of glioblastoma. Cell Rep. Med. 2020;1:100101.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Calverley DC, Phang TL, Choudhury QG, Gao B, Oton AB, Weyant MJ, et al. Significant downregulation of platelet gene expression in metastatic lung cancer. Clin Transl Sci. 2010;3:227–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Heinhuis KM, In ‘t Veld S, Dwarshuis G, van den Broek D, Sol N, Best MG, et al. RNA-sequencing of tumor-educated platelets, a novel biomarker for blood-based sarcoma diagnostics. Cancers. 2020;12:1372.

  36. In ‘t Veld S, Arkani M, Post E, Antunes-Ferreira M, D’Ambrosi S, Vessies DCL, et al. Detection and localization of early- and late-stage cancers using platelet RNA. Cancer Cell. 2022;40:999–1009.e6.

    PubMed  Google Scholar 

  37. Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. 2015;28:666–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen S. Ultrafast one‐pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. 2023;2:e107.

  39. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS  PubMed  Google Scholar 

  40. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    CAS  PubMed  Google Scholar 

  41. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  42. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Goubran HA, Stakiw J, Radosevic M, Burnouf T. Platelet-cancer interactions. Semin Thromb Hemost. 2014;40:296–305.

    CAS  PubMed  Google Scholar 

  47. Jurasz P, Alonso-Escolano D, Radomski MW. Platelet-cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharm. 2004;143:819–26.

    CAS  Google Scholar 

  48. Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood. 2018;131:1777–89.

    CAS  PubMed  Google Scholar 

  49. Repetto O, De Re V. Coagulation and fibrinolysis in gastric cancer. Ann N Y Acad Sci. 2017;1404:27–48.

    PubMed  Google Scholar 

  50. Seitz R, Rappe N, Kraus M, Immel A, Wolf M, Maasberg M, et al. Activation of coagulation and fibrinolysis in patients with lung cancer: relation to tumour stage and prognosis. Blood Coagul Fibrinol. 1993;4:249–54.

    CAS  Google Scholar 

  51. Black JA, Waxman SG. Noncanonical roles of voltage-gated sodium channels. Neuron. 2013;80:280–91.

    CAS  PubMed  Google Scholar 

  52. Shiozaki A, Konishi T, Kosuga T, Kudou M, Kurashima K, Inoue H, et al. Roles of voltage‑gated potassium channels in the maintenance of pancreatic cancer stem cells. Int J Oncol. 2021;59:76.

  53. Mitra R, Rehman A, Singh KK, Jaganathan BG. Multifaceted roles of MAGOH proteins. Mol Biol Rep. 2023;50:1931–41.

    CAS  PubMed  Google Scholar 

  54. Marcelino Meliso F, Hubert CG, Favoretto Galante PA, Penalva LO. RNA processing as an alternative route to attack glioblastoma. Hum Genet. 2017;136:1129–41.

    CAS  PubMed  Google Scholar 

  55. Rehman A, Chandra P, Singh KK The MAGOH paralogs - MAGOH, MAGOHB and their multiple isoforms. Gene Rep. 2021;24:101214.

  56. Song J, Sokoll LJ, Pasay JJ, Rubin AL, Li H, Bach DM, et al. Identification of serum biomarker panels for the early detection of pancreatic cancer. Cancer Epidemiol Biomark Prev. 2019;28:174–82.

    CAS  Google Scholar 

  57. Hasan S, Jacob R, Manne U, Paluri R. Advances in pancreatic cancer biomarkers. Oncol Rev. 2019;13:410.

    PubMed  PubMed Central  Google Scholar 

  58. Chen T, Chen X, Zhang S, Zhu J, Tang B, Wang A, et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteom Bioinforma. 2021;19:578–83.

    Google Scholar 

  59. Members C-N, Partners. Database resources of the national genomics data center, China National Center for Bioinformation in 2023. Nucleic Acids Res. 2023;51:D18–D28.

    Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Zhejiang Province (No. LTGY23H030003), Wenzhou Science and Technology Project (No. Y20210174), Medical Special Fund of Changhai Hospital (No.2020SLZ005). The funders had no roles in study design, data collection and analysis, publication decision, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

MZ and JS contributed to conception and design; YX and WJ contributed to data analysis and interpretation. WJ, WY, ZS, XG and GJ contributed to the provision of study materials or patients and experiments. WJ, YX and MZ drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianzhong Su or Meng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the Ethics Committees of Shanghai Changhai Hospital (approval number: CHEC2017-088) and the Second Affiliated Hospital of Wenzhou Medical University (approval number: 2017-046), and informed consent was obtained from all participants in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, W., Xiong, Y., Yang, W. et al. Transcriptomic profiling of blood platelets identifies a diagnostic signature for pancreatic cancer. Br J Cancer 132, 937–946 (2025). https://doi.org/10.1038/s41416-025-02980-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41416-025-02980-z

Search

Quick links