Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deciphering molecular specificity in MCL-1/BAK interaction and its implications for designing potent MCL-1 inhibitors

Abstract

The intricate interplay among BCL-2 family proteins governs mitochondrial apoptosis, with the anti-apoptotic protein MCL-1 primarily exerting its function by sequestering the pore-forming effector BAK. Understanding the MCL-1/BAK complex is pivotal for the sensitivity of cancer cells to BH3 mimetics, yet the precise molecular mechanism underlying their interaction remains elusive. Herein, we demonstrate that a canonical BH3 peptide from BAK inadequately binds to MCL-1 proteins, whereas an extended BAK-BH3 peptide with five C-terminal residues exhibits a remarkable 65-fold increase in affinity. By elucidating the complex structures of MCL-1 bound to these two BAK-BH3 peptides at 2.08 Å and 1.98 Å resolutions, we uncover their distinct binding specificities. Notably, MCL-1 engages in critical hydrophobic interactions with the extended BAK-BH3 peptide, particularly at an additional p5 sub-pocket, featuring a π-π stacking interaction between MCL-1 Phe319 and BAK Tyr89. Mutations within this p5 sub-pocket substantially disrupt the MCL-1/BAK protein-protein interaction. Furthermore, the p5 sub-pocket of MCL-1 significantly influences the efficacy of MCL-1 inhibitors. Overall, our findings elucidate the molecular specificity underlying MCL-1 binding to BAK and underscore the significance of the p5 hydrophobic sub-pocket in their high-affinity interaction, thus providing novel insights for the development of BH3 mimetics targeting the MCL-1/BAK interaction as potential therapeutics for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Binding affinity of BAK-BH3 peptides to anti-apoptotic BCL-2 proteins.
Fig. 2: Structures of MCL-1 with BAK-BH3long and BAK-BH3short.
Fig. 3: Comparison of the interactions of BAK-BH3 with MCL-1 and BCL-XL.
Fig. 4: Effect of MCL-1 and BAK mutations on the MCL-1/BAK interaction.
Fig. 5: Effect of the MCL-1 mutation F319A on the MCL-1 inhibitor A-1210477.

Similar content being viewed by others

Data availability

The coordinates and structure factors are deposited in the Protein Data Bank under the accession codes 8Y1Y (MCL-1/BAK-BH3long structure), 8Y1Z (MCL-1/BAK-BH3short structure) and 8Y20 (MCL-1/A-1210477 structure). Other data generated in this study are provided in the article and in the Supplementary Materials.

References

  1. Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell. 2024;187:235–56.

    Article  CAS  PubMed  Google Scholar 

  2. Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Bio. 2023;24:732–48.

    Article  CAS  Google Scholar 

  3. Vandenabeele P, Bultynck G, Savvides SN. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Bio. 2023;24:312–33.

    Article  CAS  Google Scholar 

  4. Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, et al. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ. 2023;30:1097–154.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moldoveanu T, Czabotar PE. BAX, BAK, and BOK: a coming of age for the BCL-2 family effector proteins. Cold Spring Harb Perspect Biol. 2020;12:a036319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell. 2011;44:517–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 2005;19:1294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hockings C, Alsop AE, Fennell SC, Lee EF, Fairlie WD, Dewson G, et al. Mcl-1 and Bcl-xL sequestration of Bak confers differential resistance to BH3-only proteins. Cell Death Differ. 2018;25:719–32.

    Article  PubMed Central  Google Scholar 

  9. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315:856–9.

    Article  CAS  PubMed  Google Scholar 

  10. Huang K, O’Neill KL, Li J, Zhou W, Han N, Pang XM, et al. BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Res. 2019;29:942–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ku B, Liang C, Jung JU, Oh BH. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res. 2011;21:627–41.

    Article  CAS  PubMed  Google Scholar 

  12. Simmons MJ, Fan G, Zong WX, Degenhardt K, White E, Gélinas C. Bfl-1/A1 functions, similar to Mcl-1, as a selective tBid and Bak antagonist. Oncogene. 2008;27:1421–8.

    Article  CAS  PubMed  Google Scholar 

  13. Yan W, Samson M, Jégou B, Toppari J. Bcl-w forms complexes with Bax and Bak, and elevated ratios of Bax/Bcl-w and Bak/Bcl-w correspond to spermatogonial and spermatocyte apoptosis in the testis. Mol Endocrinol. 2000;14:682–99.

    Article  CAS  PubMed  Google Scholar 

  14. Moldoveanu T, Follis AV, Kriwacki RW, Green DR. Many players in BCL-2 family affairs. Trends Biochem Sci. 2014;39:101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B, et al. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 1995;14:5589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science. 1997;275:983–6.

    Article  CAS  PubMed  Google Scholar 

  17. Lee EF, Grabow S, Chappaz S, Dewson G, Hockings C, Kluck RM, et al. Physiological restraint of Bak by Bcl-xL is essential for cell survival. Genes Dev. 2016;30:1240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu QA, Gehring K. Heterodimerization of BAK and MCL-1 activated by detergent micelles. J Biol Chem. 2010;285:41202–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang H, Guo M, Wei H, Chen Y. Targeting MCL-1 in cancer: current status and perspectives. J Hematol Oncol. 2021;14:67.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wei AH, Roberts AW, Spencer A, Rosenberg AS, Siegel D, Walter RB, et al. Targeting MCL-1 in hematologic malignancies: rationale and progress. Blood Rev. 2020;44:100672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kehr S, Vogler M. It’s time to die: BH3 mimetics in solid tumors. Biochim Biophys Acta Mol Cell Res. 2021;1868:118987.

    Article  CAS  PubMed  Google Scholar 

  22. Senichkin VV, Streletskaia AY, Zhivotovsky B, Kopeina GS. Molecular comprehension of Mcl-1: from gene structure to cancer therapy. Trends Cell Biol. 2019;29:549–62.

    Article  CAS  PubMed  Google Scholar 

  23. Timucin AC, Basaga H, Kutuk O. Selective targeting of antiapoptotic BCL-2 proteins in cancer. Med Res Rev. 2019;39:146–75.

    Article  CAS  PubMed  Google Scholar 

  24. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nature Rev Cancer. 2022;22:45–64.

    Article  CAS  Google Scholar 

  25. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.

    Article  CAS  PubMed  Google Scholar 

  26. Merino D, Kelly GL, Lessene G, Wei AH, Roberts AW, Strasser A. BH3-Mimetic drugs: blazing the trail for new cancer medicines. Cancer Cell. 2018;34:879–91.

    Article  CAS  PubMed  Google Scholar 

  27. Liu JJ, Yin FK, Wang ZQ, Song T, Zhang ZC. An updated patent review of Mcl-1 inhibitors (2020-2022). Expert Opin Ther Pat. 2023;33:371–83.

    Article  CAS  PubMed  Google Scholar 

  28. Caenepeel S, Brown SP, Belmontes B, Moody G, Keegan KS, Chui D, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 2018;8:1582–97.

    Article  CAS  PubMed  Google Scholar 

  29. Dai HM, Ding HS, Meng XW, Peterson KL, Schneider PA, Karp JE, et al. Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells. Genes Dev. 2015;29:2140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu DY, Hou XN, Wu WY, Zafagnin V, Li YJ, Correia C, et al. Constitutive BAK/MCL1 complexes predict paclitaxel and S63845 sensitivity of ovarian cancer (vol 12, 1002, 2021). Cell Death Disease. 2021;12:1002.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–82.

    Article  PubMed  Google Scholar 

  32. Yuda J, Will C, Phillips DC, Abraham L, Alvey C, Avigdor A, et al. Selective MCL-1 inhibitor ABBV-467 is efficacious in tumor models but is associated with cardiac troponin increases in patients. Commun Med. 2023;3:154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nature Commun. 2018;9:5341.

    Article  CAS  Google Scholar 

  34. Wang HL, Guo M, Wei HD, Chen YH. Structural basis of the specificity and interaction mechanism of Bmf binding to pro-survival Bcl-2 family proteins. Comput Struct Biotec. 2023;21:3760–7.

    Article  CAS  Google Scholar 

  35. Fleischer B, Schulze-Bergkamen H, Schuchmann M, Weber A, Biesterfeld S, Muller M, et al. Mcl-1 is an anti-apoptotic factor for human hepatocellular carcinoma. Int J Oncol. 2006;28:25–32.

    CAS  PubMed  Google Scholar 

  36. Michalski M, Bauer M, Walz F, Tumen D, Heumann P, Stockert P, et al. Simultaneous inhibition of Mcl-1 and Bcl-2 induces synergistic cell death in hepatocellular carcinoma. Biomedicines. 2023;11:1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9:351–65.

    Article  CAS  PubMed  Google Scholar 

  38. Murray JB, Davidson J, Chen I, Davis B, Dokurno P, Graham CJ, et al. Establishing drug discovery and identification of hit series for the anti-apoptotic proteins, Bcl-2 and Mcl-1. ACS Omega. 2019;4:8892–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fire E, Gullá SV, Grant RA, Keating AE. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Protein Sci. 2010;19:507–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DC, et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci USA. 2007;104:6217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dutta S, Gullá S, Chen TS, Fire E, Grant RA, Keating AE. Determinants of BH3 binding specificity for Mcl-1 versus BcI-x. J Mol Biol. 2010;398:747–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Denis C, Santos JSD, Bureau R, Voisin-Chiret AS. Hot-Spots of Mcl-1 protein. J Med Chem. 2020;63:928–43.

    Article  CAS  PubMed  Google Scholar 

  43. Merino D, Whittle JR, Vaillant F, Serrano A, Gong JN, Giner G, et al. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci Transl Med. 2017;9:eaam7049.

    Article  PubMed  Google Scholar 

  44. Kehr S, Haydn T, Bierbrauer A, Irmer B, Vogler M, Fulda S. Targeting BCL-2 proteins in pediatric cancer: Dual inhibition of BCL-XL and MCL-1 leads to rapid induction of intrinsic apoptosis. Cancer Lett. 2020;482:19–32.

    Article  CAS  PubMed  Google Scholar 

  45. Senichkin VV, Pervushin NV, Zamaraev AV, Sazonova EV, Zuev AP, Streletskaia AY, et al. Bak and Bcl-xL participate in regulating sensitivity of solid tumor-derived cell lines to Mcl-1 inhibitors. Cancers. 2022;14:181.

    Article  CAS  Google Scholar 

  46. Bruncko M, Wang L, Sheppard GS, Phillips DC, Tahir SK, Xue J, et al. Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity (vol 58, pg 2180, 2015). J Med Chem. 2015;58:4089–4089.

    Article  CAS  PubMed  Google Scholar 

  47. Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nature Rev Mol Cell Biol. 2020;21:678–95.

    Article  CAS  Google Scholar 

  48. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2005;17:393–403.

    Article  CAS  PubMed  Google Scholar 

  49. Zhai DY, Jin CF, Huang ZW, Satterthwait AC, Reed JC. Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family proteins Bcl-B and Mcl-1. J Biol Chem. 2008;283:9580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolf P, Schoeniger A, Edlich F. Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochim Biophys Acta Mol Cell Res. 2022;1869:119317.

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell. 2000;103:645–54.

    Article  CAS  PubMed  Google Scholar 

  52. Iyer S, Bell F, Westphal D, Anwari K, Gulbis J, Smith BJ, et al. Bak apoptotic pores involve a flexible C-terminal region and juxtaposition of the C-terminal transmembrane domains. Cell Death Differ. 2015;22:1665–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Okamoto T, Zobel K, Fedorova A, Quan C, Yang H, Fairbrother WJ, et al. Stabilizing the pro-apoptotic BimBH3 helix (BimSAHB) does not necessarily enhance affinity or biological activity. ACS Chem Biol. 2013;8:297–302.

    Article  CAS  PubMed  Google Scholar 

  54. Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM. Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J Biol Chem. 2011;286:7123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wei G, Margolin AA, Haery L, Brown E, Cucolo L, Julian B, et al. Chemical genomics identifies small-molecule repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell. 2012;21:547–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Szlavik Z, Csekei M, Paczal A, Szabo ZB, Sipos S, Radics G, et al. Discovery of S64315, a potent and selective Mcl-1 inhibitor. J Med Chem. 2020;63:13762–95.

    Article  CAS  PubMed  Google Scholar 

  57. Nikolovska-Coleska Z, Wang RX, Fang XL, Pan HG, Tomita Y, Li P, et al. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem. 2004;332:261–73.

    Article  CAS  PubMed  Google Scholar 

  58. Clifton MC, Dranow DM, Leed A, Fulroth B, Fairman JW, Abendroth J, et al. A maltose-binding protein fusion construct yields a robust crystallography platform for MCL1. PLoS ONE. 2015;10:e0125010.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff at BL17B1/BL18U1/BL19U1 beamlines at SSRF of the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, for providing technical support in X-ray diffraction data collection and analysis. We thank Department of Clinical Pharmacology, Xiangya Hospital, Central South University for providing Biacore 8 K instrument and technical support.

Funding

The present study was financially supported by the Natural Science Foundation of China (82470176, 82273496, 31900880 and 82172654), Hunan Provincial Science and Technology Department (2021RC4012), Changjiang Scholars Award Program of Ministry of Education, Natural Science Foundation of Hunan Province (2023JJ20092 and 2023JJ30863) and Central South University Innovation-Driven Research Program (2023CXQD076).

Author information

Authors and Affiliations

Authors

Contributions

YC and Wei H conceived the project. MG, Wang H, SX, LQ, JW, and Wei H performed experiments. M.G. and Wang H performed data collection and structure determination. XC and XL helped with data analysis. MG, XL, YC, and Wei H prepared the paper.

Corresponding authors

Correspondence to Ming Guo, Xiaoyun Lu or Yongheng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

This study was approved by the ethics committee of the affiliated Xiangya Hospital of Central South University. All methods were performed in accordance with the relevant guidelines and regulations. Human cell lines were treated as described in the methods section of this manuscript. This study did not involve human subjects research or experiments on live vertebrates.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Wang, H., Xiang, S. et al. Deciphering molecular specificity in MCL-1/BAK interaction and its implications for designing potent MCL-1 inhibitors. Cell Death Differ 32, 991–999 (2025). https://doi.org/10.1038/s41418-025-01454-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01454-2

This article is cited by

Search

Quick links