Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Age-associated reduction in ER-Mitochondrial contacts impairs mitochondrial lipid metabolism and autophagosome formation in the heart

This article has been updated

Abstract

The accumulation of dysfunctional giant mitochondria is a hallmark of aged cardiomyocytes. This study investigated the core mechanism underlying this phenomenon, focusing on the disruption of mitochondrial lipid metabolism and its effects on mitochondrial dynamics and autophagy, using both naturally aging mouse models and etoposide-induced cellular senescence models. In aged cardiomyocytes, a reduction in endoplasmic reticulum-mitochondrial (ER-Mito) contacts impairs lipid transport and leads to insufficient synthesis of mitochondrial phosphatidylethanolamine (PE). A deficiency in phosphatidylserine decarboxylase (PISD) further hinders the conversion of phosphatidylserine to PE within mitochondria, exacerbating the deficit of PE production. This PE shortage disrupts autophagosomal membrane formation, leading to impaired autophagic flux and the accumulation of damaged mitochondria. Modulating LACTB expression to enhance PISD activity and PE production helps maintain mitochondrial homeostasis and the integrity of aging cardiomyocytes. These findings highlight the disruption of mitochondrial lipid metabolism as a central mechanism driving the accumulation of dysfunctional giant mitochondria in aged cardiomyocytes and suggest that inhibiting LACTB expression could serve as a potential therapeutic strategy for mitigating cardiac aging and preserving mitochondrial function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduction of ER-Mito contacts in cardiomyocytes from aging mice leads to accumulation of dysfunctional giant mitochondria.
Fig. 2: Reduction in ER-Mito contacts leads to mitochondrial metabolic dysregulation and autophagic flux blockade in etoposide-treated HL-1 cells.
Fig. 3: Reduction in mitochondrion-associated membranes leading to mitochondrial metabolic dysfunction in aging is associated with decreased mt-PE production.
Fig. 4: PISD deficiency in mitochondria of aged cardiomyocytes inhibits the conversion of PS to PE, impeding mitochondrial PE synthesis.
Fig. 5: Insufficient PE in aged cardiomyocytes impairs autophagosome membrane formation, leading to mitochondrial autophagic flux disruption.
Fig. 6: Targeting LACTB may reverse the PISD-mtPE axis to improve mitochondrial function and metabolism in aged cardiomyocytes.
Fig. 7: Overview of the mechanism by which the aging-associated reduction in ER-mitochondrial contacts impairs mitochondrial lipid metabolism and autophagosome formation in the heart.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

  • 14 May 2025

    The affiliations for Guatam Sethi has been updated to affiliation 10.

References

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186:243–78.

    Article  CAS  PubMed  Google Scholar 

  2. Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell. 2021;56:1394–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papsdorf K, Brunet A. Linking Lipid Metabolism to Chromatin Regulation in Aging. Trends Cell Biol. 2019;29:97–116.

    Article  CAS  PubMed  Google Scholar 

  4. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.

    Article  CAS  PubMed  Google Scholar 

  5. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15:805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol. 2025;35:46–58.

  7. Csordas G, Weaver D, Hajnoczky G. Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. Trends Cell Biol. 2018;28:523–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barazzuol L, Giamogante F, Cali T. Mitochondria Associated Membranes (MAMs): Architecture and physiopathological role. Cell Calcium. 2021;94:102343.

    Article  CAS  PubMed  Google Scholar 

  9. Cuervo AM, Macian F. Autophagy and the immune function in aging. Curr Opin Immunol. 2014;29:97–104.

    Article  CAS  PubMed  Google Scholar 

  10. Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol. 2018;19:579–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie Y, Li J, Kang R, Tang D. Interplay between lipid metabolism and autophagy. Front Cell Dev Biol. 2020;8:431.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Duan C, Liu R, Kuang L, Zhang Z, Hou D, Zheng D, et al. Activated Drp1 Initiates the Formation of Endoplasmic Reticulum-Mitochondrial Contacts via Shrm4-Mediated Actin Bundling. Adv Sci (Weinh). 2023;10:e2304885.

    Article  PubMed  Google Scholar 

  13. Korobova F, Ramabhadran V, Higgs HN. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science. 2013;339:464–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ye Y, Tyndall ER, Bui V, Bewley MC, Wang G, Hong X, et al. Multifaceted membrane interactions of human Atg3 promote LC3-phosphatidylethanolamine conjugation during autophagy. Nat Commun. 2023;14:5503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keckesova Z, Donaher JL, De Cock J, Freinkman E, Lingrell S, Bachovchin DA, et al. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature. 2017;543:681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Acharya TK, Kumar A, Kumar S, Goswami C. TRPV4 interacts with MFN2 and facilitates endoplasmic reticulum-mitochondrial contact points for Ca(2+)-buffering. Life Sci. 2022;310:121112.

    Article  CAS  PubMed  Google Scholar 

  17. Song CC, Pantopoulos K, Chen GH, Zhong CC, Zhao T, Zhang DG, et al. Iron increases lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the HIF1alpha-PPARgamma pathway. Cell Mol Life Sci. 2022;79:394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Janikiewicz J, Szymanski J, Malinska D, Patalas-Krawczyk P, Michalska B, Duszynski J, et al. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell Death Dis. 2018;9:332.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lu X, Gong Y, Hu W, Mao Y, Wang T, Sun Z, Su X, Fu G, Wang Y, Lai D. Ultrastructural and proteomic profiling of mitochondria-associated endoplasmic reticulum membranes reveal aging signatures in striated muscle. Cell Death & Disease. 2022;13:296.

    Article  CAS  Google Scholar 

  20. Chen YF, Kao CH, Chen YT, Wang CH, Wu CY, Tsai CY, et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 2009;23:1183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martino Adami PV, Nichtova Z, Weaver DB, Bartok A, Wisniewski T, Jones DR, et al. Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of Alzheimer’s disease. J Cell Sci. 2019;132:jcs229906.

  22. Wiel C, Lallet-Daher H, Gitenay D, Gras B, Le Calve B, Augert A, et al. Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun. 2014;5:3792.

    Article  CAS  PubMed  Google Scholar 

  23. Madreiter-Sokolowski CT, Waldeck-Weiermair M, Bourguignon MP, Villeneuve N, Gottschalk B, Klec C, et al. Enhanced inter-compartmental Ca(2+) flux modulates mitochondrial metabolism and apoptotic threshold during aging. Redox Biol. 2019;20:458–66.

    Article  CAS  PubMed  Google Scholar 

  24. Ziegler DV, Vindrieux D, Goehrig D, Jaber S, Collin G, Griveau A, et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat Commun. 2021;12:720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong J, Chen L, Ye F, Tang J, Liu B, Lin J, et al. Mic19 depletion impairs endoplasmic reticulum-mitochondrial contacts and mitochondrial lipid metabolism and triggers liver disease. Nat Commun. 2024;15:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Salvador-Gallego R, Hoyer MJ, Voeltz GK. SnapShot: Functions of Endoplasmic Reticulum Membrane Contact Sites. Cell. 2017;171:1224–e1.

    Article  CAS  PubMed  Google Scholar 

  27. Hernandez-Alvarez MI, Sebastian D, Vives S, Ivanova S, Bartoccioni P, Kakimoto P, et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell. 2019;177:881–95.e17.

    Article  CAS  PubMed  Google Scholar 

  28. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859:1558–72.

    Article  PubMed  Google Scholar 

  29. Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine Metabolism in Health and Disease. Int Rev Cell Mol Biol. 2016;321:29–88.

    Article  CAS  PubMed  Google Scholar 

  30. Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, et al. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell. 2024;187:1177–90.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao T, Goedhart CM, Sam PN, Sabouny R, Lingrell S, Cornish AJ, et al. PISD is a mitochondrial disease gene causing skeletal dysplasia, cataracts, and white matter changes. Life Sci Alliance. 2019;2.e201900353.

  32. Liu N, Huang L, Xu H, He X, He X, Cao J, et al. Phosphatidylserine decarboxylase downregulation in uric acid‑induced hepatic mitochondrial dysfunction and apoptosis. MedComm (2020). 2023;4:e336.

    Article  CAS  PubMed  Google Scholar 

  33. Xu J, Chen S, Wang W, Man Lam S, Xu Y, Zhang S, et al. Hepatic CDP-diacylglycerol synthase 2 deficiency causes mitochondrial dysfunction and promotes rapid progression of NASH and fibrosis. Sci Bull (Beijing). 2022;67:299–314.

    Article  CAS  PubMed  Google Scholar 

  34. Luo Y, Zhang Y, Pang S, Min J, Wang T, Wu D, et al. PCBP1 protects bladder cancer cells from mitochondria injury and ferroptosis by inducing LACTB mRNA degradation. Mol Carcinog. 2023;62:907–19.

    Article  CAS  PubMed  Google Scholar 

  35. Chen YC, Humphries B, Brien R, Gibbons AE, Chen YT, Qyli T, et al. Functional Isolation of Tumor-Initiating Cells using Microfluidic-Based Migration Identifies Phosphatidylserine Decarboxylase as a Key Regulator. Sci Rep. 2018;8:244.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhao H, Wang T. PE homeostasis rebalanced through mitochondria-ER lipid exchange prevents retinal degeneration in Drosophila. PLoS Genet. 2020;16:e1009070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rockenfeller P, Koska M, Pietrocola F, Minois N, Knittelfelder O, Sica V, et al. Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ. 2015;22:499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nanayakkara R, Gurung R, Rodgers SJ, Eramo MJ, Ramm G, Mitchell CA, et al. Autophagic lysosome reformation in health and disease. Autophagy. 2023;19:1378–95.

    Article  CAS  PubMed  Google Scholar 

  39. Xie S, Xu SC, Deng W, Tang Q. Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduct Target Ther. 2023;8:114.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miyamoto S. Autophagy and cardiac aging. Cell Death Differ. 2019;26:653–64.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li X, Ren Z, Huang X, Yu T LACTB, a Metabolic Therapeutic Target in Clinical Cancer Application. Cells. 2022;11:2749.

  42. Hong W, Zeng X, Wang H, Tan X, Tian Y, Hu H, et al. PGC-1alpha loss promotes mitochondrial protein lactylation in acetaminophen-induced liver injury via the LDHB-lactate axis. Pharmacol Res. 2024;205:107228.

    Article  CAS  PubMed  Google Scholar 

  43. Tsugawa H, Ishihara T, Ogasa K, Iwanami S, Hori A, Takahashi M, et al. A lipidome landscape of aging in mice. Nat Aging. 2024;4:709–26.

    Article  CAS  PubMed  Google Scholar 

  44. Victorelli S, Salmonowicz H, Chapman J, Martini H, Vizioli MG, Riley JS, et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature. 2023;622:627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong W, Peng X, Zhou X, Li P, Ye Z, Liang W. FXR/ASS1 axis attenuates the TAA-induced liver injury through arginine metabolism. Biochem Biophys Res Commun. 2022;611:31–7.

Download references

Acknowledgements

The Multi-SIM work was supported by Nano Insights (https://www.naxi-tech.com). SIM&ODT analyses were supported by CSR-Biotech (https://www.csr-biotech.com). J.C. acknowledges IP national support, through UID/04923 - Comprehensive Health Research Centre.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 82272252, 82270378, and 82372192), Chongqing Talents Program under grant number (cstc2022ycjh-bgzxm0007) and Chongqing Natural Science Foundation General Project (No.CSTB2023NSCQ-MSX0192).

Author information

Authors and Affiliations

Authors

Contributions

D.C.Y. and H.W.L. wrote the manuscript. H.W.L. was responsible for most of the cellular experiments. Z.X. and T.Y. were responsible for searching, sorting, and summarizing the references. M.H.M. and J.D.P. were responsible for plasmid construction, R.X.P. assisted with the animal experiments. S.R. assisted with the cellular experiments. D.C.Y., M.R.Y. and L.Z.C. were responsible for the funding of this study. H.H., G.S. and M.D.Q. were responsible for the manuscript editing. M.A, S.K.B and J.C wrote the manuscript and provided the English editing. All authors (regardless of their names) have read, edited, collaborated and approved the final version of the manuscript.

Corresponding authors

Correspondence to Gautam Sethi, He Huang or Chenyang Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All methods were performed in accordance with the relevant guidelines and regulations. All animal experiments were approved by the Institutional Animal Care and Use Committee of the Second Affiliated Hospital of the Chongqing Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Zeng, X., Ma, R. et al. Age-associated reduction in ER-Mitochondrial contacts impairs mitochondrial lipid metabolism and autophagosome formation in the heart. Cell Death Differ 32, 1900–1914 (2025). https://doi.org/10.1038/s41418-025-01511-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01511-w

This article is cited by

Search

Quick links