Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MARCH8/NSUN6/ROS-mediated DNA damage positive feedback loop regulates cisplatin resistance in osteosarcoma

Abstract

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents and is often characterized by resistance to chemotherapy. Although RNA 5‑methylcytosine (m5C) modification is known to contribute to tumor progression, its exact role in osteosarcoma drug resistance remains poorly understood. Here, we identify NOP2/Sun RNA methyltransferase family member 6 (NSUN6) as an m5C methyltransferase that positively correlates with osteosarcoma progression. Mechanistically, the E3 ubiquitin ligase membrane‑associated RING‑CH‑type finger 8 (MARCH8) ubiquitinates NSUN6 at Lys271 and Lys462, leading to its proteasomal degradation. Reduced NSUN6 expression lowers m5C modification on peroxisomal biogenesis factor 1 (PEX1) and peroxisomal biogenesis factor 3 (PEX3) mRNAs, destabilizing them through loss of binding by the m5C reader YBX1. In turn, this downregulates peroxisome synthesis and catalase (CAT) protein production, causing increased intracellular reactive oxygen species (ROS), DNA damage, and heightened sensitivity of osteosarcoma cells to cisplatin. Furthermore, elevated ROS levels reinforce NSUN6 ubiquitination and degradation by enhancing the NSUN6-MARCH8 interaction, establishing a positive feedback loop. Collectively, these findings highlight an intricate NSUN6-m5C-YBX1-PEXs signaling axis that governs peroxisome biogenesis, ROS accumulation, and cisplatin responsiveness in osteosarcoma. Our work not only clarifies the role of m5C in osteosarcoma drug resistance but also offers a potential therapeutic angle for targeting NSUN6 and its peroxisome‑regulating network to overcome chemoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The expression of NSUN6 was correlated with the malignant degree of osteosarcoma.
Fig. 2: MARCH8 Interacts with NSUN6 and Regulates Its Ubiquitination in Osteosarcoma Cells.
Fig. 3: MARCH8 mediates NSUN6 degradation via the ubiquitin-proteasome pathway.
Fig. 4: NSUN6 regulates peroxisome synthesis and ROS production.
Fig. 5: NSUN6 promotes RNA stability of PEX1 and PEX3 in an m5C-YBX1 manner.
Fig. 6: DNA damage caused by NSUN6 knockdown induces NSUN6 ubiquitination and degradation.
Fig. 7: NSUN6 knockdown enhances cisplatin sensitivity in osteosarcoma cells.
Fig. 8: PEX1 and PEX3 modulate NSUN6-mediated osteosarcoma proliferation and cisplatin sensitivity.

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

References

  1. Meltzer PS, Helman LJ. New horizons in the treatment of osteosarcoma. N Engl J Med. 2021;385:2066–76.

    Article  CAS  PubMed  Google Scholar 

  2. Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, Janeway KA, et al. Osteosarcoma. Nat Rev Dis Prim. 2022;8:77.

    Article  PubMed  Google Scholar 

  3. Nombela P, Miguel-Lopez B, Blanco S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer. 2021;20:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA methylation in the resistance to therapy in solid tumors. Front Oncol. 2020;10:1152.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yuan Y, Yan G, He M, Lei H, Li L, Wang Y, et al. ALKBH5 suppresses tumor progression via an m(6)A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma. Cell Death Dis. 2021;12:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He M, Wang Y, Xie J, Pu J, Shen Z, Wang A, et al. M(7)G modification of FTH1 and pri-miR-26a regulates ferroptosis and chemotherapy resistance in osteosarcoma. Oncogene. 2024;43:341–53.

    Article  CAS  PubMed  Google Scholar 

  7. Dai Q, Ye C, Irkliyenko I, Wang Y, Sun HL, Gao Y, et al. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA. Nat Biotechnol. 2024;42:1559–70.

  8. Li M, Tao Z, Zhao Y, Li L, Zheng J, Li Z, et al. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med. 2022;20:214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gu X, Ma X, Chen C, Guan J, Wang J, Wu S, et al. Vital roles of m(5)C RNA modification in cancer and immune cell biology. Front Immunol. 2023;14:1207371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen T, Xu ZG, Luo J, Manne RK, Wang Z, Hsu CC, et al. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab. 2023;35:1782–98.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He A, Dean JM, Lodhi IJ. Peroxisomes as cellular adaptors to metabolic and environmental stress. Trends Cell Biol. 2021;31:656–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun Y, Zhang C, Fang Q, Zhang W, Liu W. Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J Transl Med. 2023;21:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou Y, Ray PS, Zhu J, Stein F, Rettel M, Sekaran T, et al. Systematic analysis of RNA-binding proteins identifies targetable therapeutic vulnerabilities in osteosarcoma. Nat Commun. 2024;15:2810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang M, Wei R, Zhang S, Hu S, Liang X, Yang Z, et al. NSUN2 promotes osteosarcoma progression by enhancing the stability of FABP5 mRNA via m(5)C methylation. Cell Death Dis. 2023;14:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Wang MM, Geng Y, Ye CY, Zang YS. Membrane-associated RING-CH protein (MARCH8) is a novel glycolysis repressor targeted by miR-32 in colorectal cancer. J Transl Med. 2022;20:402.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sun X, Zhang K, Peng X, Zhou P, Qu C, Yang L, et al. HDAC4 mediated LHPP deacetylation enhances its destabilization and promotes the proliferation and metastasis of nasopharyngeal carcinoma. Cancer Lett. 2023;562:216158.

    Article  CAS  PubMed  Google Scholar 

  17. Kim JA. Peroxisome metabolism in cancer. Cells. 2020;9:1692.

  18. Demers ND, Riccio V, Jo DS, Bhandari S, Law KB, Liao W, et al. PEX13 prevents pexophagy by regulating ubiquitinated PEX5 and peroxisomal ROS. Autophagy. 2023;19:1781–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. You L, Chen J, Liu W, Xiang Q, Luo Z, Wang W, et al. Enterovirus 71 induces neural cell apoptosis and autophagy through promoting ACOX1 downregulation and ROS generation. Virulence. 2020;11:537–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ganguli G, Mukherjee U, Sonawane A. Peroxisomes and oxidative stress: their implications in the modulation of cellular immunity during mycobacterial infection. Front Microbiol. 2019;10:1121.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Okumoto K, Tamura S, Honsho M, Fujiki Y. Peroxisome: metabolic functions and biogenesis. Adv Exp Med Biol. 2020;1299:3–17.

    Article  PubMed  Google Scholar 

  22. Rudowitz M, Erdmann R. Import and quality control of peroxisomal proteins. J Cell Sci. 2023;136.

  23. Li Y, Xue M, Deng X, Dong L, Nguyen LXT, Ren L, et al. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell. 2023;30:1072–90.e10.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu L, Chen Y, Zhang T, Cui G, Wang W, Zhang G, et al. Not Available]. Adv Sci. 2024;11:e2302379.

    Article  Google Scholar 

  25. Ji YX, Zhang P, Zhang XJ, Zhao YC, Deng KQ, Jiang X, et al. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling. Nat Commun. 2016;7:11267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev. 1999;99:2467–98.

    Article  CAS  PubMed  Google Scholar 

  27. Huang F, Cai F, Dahabieh MS, Gunawardena K, Talebi A, Dehairs J, et al. Peroxisome disruption alters lipid metabolism and potentiates antitumor response with MAPK-targeted therapy in melanoma. J Clin Investig. 2023;133:e166644.

  28. Zhuang H, Yu B, Tao D, Xu X, Xu Y, Wang J, et al. The role of m6A methylation in therapy resistance in cancer. Mol Cancer. 2023;22:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu M, Ni M, Xu F, Liu C, Chen L, Li J, et al. NSUN6-mediated 5-methylcytosine modification of NDRG1 mRNA promotes radioresistance in cervical cancer. Mol Cancer. 2024;23:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang R, Liang X, Wang H, Guo M, Shen H, Shi Y, et al. The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation. EBioMedicine. 2021;63:103195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu S, Yang M, Xiao K, Yang Z, Cai L, Xie Y, et al. Loss of NSUN6 inhibits osteosarcoma progression by downregulating EEF1A2 expression and activation of Akt/mTOR signaling pathway via m(5)C methylation. Exp Ther Med. 2023;26:457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dantuma NP, Masucci MG. Stabilization signals: a novel regulatory mechanism in the ubiquitin/proteasome system. FEBS Lett. 2002;529:22–6.

    Article  CAS  PubMed  Google Scholar 

  33. Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, et al. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med. 2023;13:e1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu Y, Zhang D, Ji J, Zhang L. Ubiquitin ligase MARCH8 promotes the malignant progression of hepatocellular carcinoma through PTEN ubiquitination and degradation. Mol Carcinog. 2023;62:1062–72.

    Article  CAS  PubMed  Google Scholar 

  35. Singh S, Saraya A, Das P, Sharma R. Increased expression of MARCH8, an E3 ubiquitin ligase, is associated with growth of esophageal tumor. Cancer Cell Int. 2017;17:116.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fan J, Tian L, Li M, Huang SH, Zhang J, Zhao B. MARCH8 is associated with poor prognosis in non-small cell lung cancers patients. Oncotarget. 2017;8:108238–48.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen W, Patel D, Jia Y, Yu Z, Liu X, Shi H, et al. MARCH8 suppresses tumor metastasis and mediates degradation of STAT3 and CD44 in breast cancer cells. Cancers. 2021;13:2550.

  38. Wang Q, Chen Q, Zhu L, Chen M, Xu W, Panday S, et al. JWA regulates TRAIL-induced apoptosis via MARCH8-mediated DR4 ubiquitination in cisplatin-resistant gastric cancer cells. Oncogenesis. 2017;6:e353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dahabieh MS, Huang F, Goncalves C, Flores Gonzalez RE, Prabhu S, Bolt A, et al. Silencing PEX26 as an unconventional mode to kill drug-resistant cancer cells and forestall drug resistance. Autophagy. 2022;18:540–58.

    Article  CAS  PubMed  Google Scholar 

  40. Saha A, Zhao S, Kindall A, Wilder C, Friedman CA, Clark R, et al. Cysteine depletion sensitizes prostate cancer cells to agents that enhance DNA damage and to immune checkpoint inhibition. J Exp Clin Cancer Res. 2023;42:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang S, Xiao H, Sun Y, Cao L. Zeylenone synergizes with cisplatin in osteosarcoma by enhancing DNA damage, apoptosis, and necrosis via the Hsp90/AKT/GSK3beta and Fanconi anaemia pathway. Phytother Res. 2021;35:5899–918.

    Article  CAS  PubMed  Google Scholar 

  43. Li YP, Chen Y, Li AS, Reid MB. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol. 2003;285:C806–12.

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Cao L, Wang Y, Zou Y, Guo Q, Chen S, et al. The phosphorylation-deubiquitination positive feedback loop of the CHK2-USP7 axis stabilizes p53 under oxidative stress. Cell Rep. 2024;43:114366.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2023YFF1204600), the National Natural Science Foundation of China (82472477, 82273026), the National Natural Science Foundation of China Regional Joint Fund Integrated Project (U23AC6008), the Heilongjiang Province Key R&D Project (GA23C002), and the China Postdoctoral Science Foundation (2023M744119).

Author information

Authors and Affiliations

Contributions

Conception and design: LY, YY, MH; Development of methodology: MH, TL, AW, YL, JX, XW; In vivo experiment implementation: MH, TL, AW, YL, JX, SG; In vitro experiment implementation: MH, TL, ZL, XW, YW, YW, ZR; Analysis and interpretation of data: MH, TL, AW, YY; Writing of the manuscript: MH, TL, AW, YY; Study supervision: LY, YY; Funding acquisition: LY, YY, and MH.

Corresponding authors

Correspondence to Lei Yang or Ye Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

Ethical approval for the study was granted by the Harbin Medical University Animal Ethical committee, in accordance with the principles of the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Li, T., Wang, A. et al. MARCH8/NSUN6/ROS-mediated DNA damage positive feedback loop regulates cisplatin resistance in osteosarcoma. Cell Death Differ 32, 2412–2426 (2025). https://doi.org/10.1038/s41418-025-01544-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01544-1

This article is cited by

Search

Quick links