Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible ALKBH5 cytosolic aggregation accelerates cellular senescence

Abstract

Cellular senescence is the major hallmark and therapeutic target of aging and age-related diseases. The role of ALKBH5, one of the main m6A demethylases, in cellular senescence emerges however remains contentious. Herein, we show the reversible ALKBH5 aggregation in cytoplasm promotes cellular senescence. Mechanically, ALKBH5 aggregation causes cytosolic retention, resulting in the m6A dysregulation and m6A hypermethylation of Cdk2, which promotes Cdk2 RNA instability to drive senescence. In addition, m6A imbalance aggravates ALKBH5 cytosolic aggregation in a feedback loop. We further demonstrate that ALKBH5 nuclear translocation required the formation of ALKBH5 droplet phase via binding Nucleoporin p62 (Nup62), while the aggregation of ALKBH5 traps with Nup62 in the cytoplasm. Reduced Nup62 prevents ALKBH5 nuclear entry leading to cellular senescence. Importantly, administration of m6A labeled RNA efficiently reverses ALKBH5 cytosolic aggregates and restores its nuclear entry to alleviate cellular senescence. Forced nuclear entry by NLS-ALKBH5 can prevent senescence in vitro and in vivo. Taken together, these findings unravel a novel paradigm for m6A epigenetic regulation in cellular senescence and offer promising therapeutic targets and strategies for the intervention of aging and age-associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ALKBH5 cytosolic retention promotes cellular senescence.
Fig. 2: Cytoplasmic retention of ALKBH5 causes m6A imbalance to drive senescence.
Fig. 3: m6A imbalance feedback loop aggravates ALKBH5 cytosolic aggregation to accelerate senescence.
Fig. 4: Nup62 functions as a mediator for the nuclear translocation of ALKBH5.
Fig. 5: ALKBH5 intrinsic structure orchestrates solid aggregates transition and subcellular distribution.
Fig. 6: ALKBH5 forms cytoplasmic droplets to facilitate nuclear transportation.
Fig. 7: NLS-ALKBH5 mitigates senescence-related signatures in vivo.

Similar content being viewed by others

Data availability

All sequencing data generated for this paper have been deposited at NCBI’s Gene Expression Omnibus under accession number GSE264231.

References

  1. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, et al. The landscape of aging. Sci China Life Sci. 2022;65:2354–454.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022;28:1556–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McMahon M, Forester C, Buffenstein R. Aging through an epitranscriptomic lens. Nat Aging. 2021;1:335–46.

    Article  PubMed  Google Scholar 

  5. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  7. Wu Z, Shi Y, Lu M, Song M, Yu Z, Wang J, et al. METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res. 2020;48:11083–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ye G, Li J, Yu W, Xie Z, Zheng G, Liu W, et al. ALKBH5 facilitates CYP1B1 mRNA degradation via m6A demethylation to alleviate MSC senescence and osteoarthritis progression. Exp Mol Med. 2023;55:1743–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Z, Lu M, Liu D, Shi Y, Ren J, Wang S, et al. m6A epitranscriptomic regulation of tissue homeostasis during primate aging. Nat Aging. 2023;3:705–21.

    Article  CAS  PubMed  Google Scholar 

  10. Castro-Hernández R, Berulava T, Metelova M, Epple R, Centeno TP, Richter J, et al. Conserved reduction of m6A RNA modifications during aging and neurodegeneration is linked to changes in synaptic transcripts. Proc Natl Acad Sci USA. 2023;120:e2204933120.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shafik AM, Zhang F, Guo Z, Dai Q, Pajdzik K, Li Y, et al. N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol. 2021;22:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int. 2020;20:347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 Is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.

    Article  CAS  PubMed  Google Scholar 

  14. Yu F, Wei J, Cui X, Yu C, Ni W, Bungert J, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res. 2021;49:5779–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao X, Liang X, Liu B, Hong Y, He H, Shen Y, et al. Downregulation of ALKBH5 rejuvenates aged human mesenchymal stem cells and enhances their therapeutic efficacy in myocardial infarction. FASEB J. 2023;37:e23294.

    Article  CAS  PubMed  Google Scholar 

  16. Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17:e12840.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bie J, Li R, Li Y, Song C, Chen Z, Zhang T, et al. PKM2 aggregation drives metabolism reprograming during aging process. Nat Commun. 2024;15:5761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015;162:1066–77.

    Article  CAS  PubMed  Google Scholar 

  19. Chen H-X, Zhang Z, Ma D-Z, Chen L-Q, Luo G-Z. Mapping single-nucleotide m6A by m6A-REF-seq. Methods. 2021;203:392–8.

    Article  PubMed  Google Scholar 

  20. Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, et al. Single-base mapping of m6A by an antibody-independent method. Sci Adv. 2019;5:eaax0250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J Cell Biol. 1998;143:1883–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qin X, Long Y, Bai X, Cao L, Yan H, Zhang K et al. The disordered C terminus of ALKBH5 promotes phase separation and paraspeckles assembly. J Biol Chem 2023;299:105071.

  23. Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal. 2021; 19. https://doi.org/10.1186/s12964-021-00741-y.

  24. Fung HYJ, Fu SC, Chook YM. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. Elife. 2017;6:60.

    Article  Google Scholar 

  25. Wang J, Pei G, Wang Y, Wu D, Liu X, Li G, et al. Phase separation of the nuclear pore complex facilitates selective nuclear transport to regulate plant defense against pathogen and pest invasion. Mol Plant. 2023;16:1016–30.

    Article  CAS  PubMed  Google Scholar 

  26. Louka A, Zacco E, Temussi PA, Tartaglia GG, Pastore A. RNA as the stone guest of protein aggregation. Nucleic Acids Res. 2020;48:11880–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun T, Zhang L, Feng J, Bao L, Wang J, Song Z, et al. Characterization of cellular senescence in doxorubicin-induced aging mice. Exp Gerontol. 2022;163:111800.

    Article  CAS  PubMed  Google Scholar 

  28. Xu C, Liu K, Tempel W, Demetriades M, Aik WS, Schofield CJ, et al. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. 2014;289:17299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. D’Angelo MA, Raices M, Panowski SH, Hetzer MW. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell. 2009;136:284–95.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grima JC, Daigle JG, Arbez N, Cunningham KC, Zhang K, Ochaba J, et al. Mutant huntingtin disrupts the nuclear pore complex. Neuron. 2017;94:93–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015;525:56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boeynaems S, Bogaert E, Michiels E, Gijselinck I, Sieben A, Jovičić A, et al. Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci Rep. 2016;6:20877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ge Gao, Dr. Linsheng Wang, Dr. Deliang Zhu and Dr. Zhihong Chen for their assistance in this project. This work was supported by National Natural Science Foundation of China (81821003, 82273180 and 32300617), Guangdong Basic and Applied Basic Research Foundation (2024A1515011365, 2021B1515130004), Science and Technology Projects in Guangzhou (2025A03J4509), China Postdoctoral Science Foundation (2023T160133), Guangdong Provincial People’s Hospital, High-level Hospital Construction Project (KJ012021074, KJ012019517).

Author information

Authors and Affiliations

Authors

Contributions

GJ, ZZ, X-WB and LC conceived the study. LC, ZC, JM, QX, WL, HZ, YC and YZ generated reagents and conducted experiment design and execution, data collection and data analysis. ZC and LC performed bioinformatics analysis. GJ, ZZ, X-WB, and LC wrote the manuscript.

Corresponding authors

Correspondence to Xiu-Wu Bian, Zhongjun Zhou or Guoxiang Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All procedures were performed in compliance with the relevant guidelines and regulations, as approved by the Ethics Review Committee of Guangdong Provincial People’s Hospital (KY2024-450-02).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chen, Z., Mo, J. et al. Reversible ALKBH5 cytosolic aggregation accelerates cellular senescence. Cell Death Differ 33, 171–187 (2026). https://doi.org/10.1038/s41418-025-01560-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41418-025-01560-1

Search

Quick links