Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRISPR/Cas9 library screening uncovered CCT2 as a critical driver of acquired resistance to EGFR-targeted therapy by stabilizing TMX1 in non-small cell lung cancer

Abstract

In the treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), the emergence of acquired resistance remains a significant challenge. Elucidating the underlying mechanisms of resistance is crucial for developing novel strategies to overcome or delay therapeutic escape. To this end, this study aimed to identify key drivers of EGFR-TKIs resistance and explore actionable targets for intervention. We investigated resistance mechanisms by integrating CRISPR/Cas9-based genome-wide screening with tandem mass tag (TMT) proteomic analysis, and virtually screened bioactive small molecule libraries to identify compounds capable of restoring EGFR-TKIs sensitivity. The multi-omics approach revealed that CCT2 is a critical mediator of resistance to third-generation EGFR-TKIs in lung cancer, with higher expression of CCT2 observed in resistant cells compared to sensitive cells. Mechanistically, CCT2 recruits tripartite motif-containing protein 28 (TRIM28) to catalyze SUMO2 modification of thioredoxin-related transmembrane protein 1 (TMX1), inhibiting its ubiquitination and enhancing protein stability. This post-translational modification (PTM) promotes TMX1-dependent reactive oxygen species (ROS) clearance, thereby conferring resistance. Importantly, pharmacological inhibition with the compound HY-10127, identified through virtual screening, effectively restored EGFR-TKIs sensitivity in resistant cell lines and delayed the development of resistance in xenograft models. The findings establish the CCT2/TRIM28/TMX1/ROS axis as a novel resistance mechanism in EGFR-mutated lung cancer, and targeting this pathway with HY-10127 represents a promising strategy to overcome resistance to third-generation EGFR-TKIs, providing preclinical rationale for clinical translation. These discoveries advance our understanding of molecular resistance mechanisms and offer potential therapeutic targets for improving lung cancer prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome-wide CRISPR/Cas9 screening identified CCT2 as a driver of lung cancer EGFR-TKI resistance.
Fig. 2: CCT2 promotes acquired EGFR-TKI resistance in NSCLC.
Fig. 3: CCT2 stabilizes TMX1 by removal of ubiquitination of TMX1.
Fig. 4: TRIM28 inhibits the ubiquitination of TMX1 by modulating its SUMO2 modification, thereby stabilizing TMX1.
Fig. 5: CCT2 recruits TRIM28 to SUMOylate TMX1 with SUMO2, and inhibiting its ubiquitination and degradation.
Fig. 6: TMX1 is the key player in CCT2-mediated EGFR-TKI resistance.
Fig. 7: The CCT2 inhibitor HY-10127 reverses furmonertinib resistance in combination with furmonertinib.

Data availability

Data are available on reasonable request.

References

  1. Hendriks LEL, Remon J, Faivre-Finn C, Garassino MC, Heymach JV, Kerr KM, et al. Non-small-cell lung cancer. Nat Rev Dis Prim. 2024;10:71.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    PubMed  Google Scholar 

  3. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.

    Article  CAS  PubMed  Google Scholar 

  4. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.

    Article  CAS  PubMed  Google Scholar 

  5. Stewart EL, Mascaux C, Pham NA, Sakashita S, Sykes J, Kim L, et al. Clinical utility of patient-derived xenografts to determine biomarkers of prognosis and map resistance pathways in EGFR-mutant lung adenocarcinoma. J Clin Oncol. 2015;33:2472–80.

    Article  CAS  PubMed  Google Scholar 

  6. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17:637–58.

    Article  CAS  PubMed  Google Scholar 

  7. Patil BR, Bhadane KV, Ahmad I, Agrawal YJ, Shimpi AA, Dhangar MS, et al. Exploring the structural activity relationship of the Osimertinib: A covalent inhibitor of double mutant EGFR(L858R/T790M) tyrosine kinase for the treatment of Non-Small Cell Lung Cancer (NSCLC). Bioorg Med Chem. 2024;109:117796.

    Article  CAS  PubMed  Google Scholar 

  8. Jänne PA, Yang JC, Kim DW, Planchard D, Ohe Y, Ramalingam SS, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372:1689–99.

    Article  PubMed  Google Scholar 

  9. Shi Y, Chen G, Wang X, Liu Y, Wu L, Hao Y, et al. Furmonertinib (AST2818) versus gefitinib as first-line therapy for Chinese patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer (FURLONG): a multicentre, double-blind, randomised phase 3 study. Lancet Respir Med. 2022;10:1019–28.

    Article  CAS  PubMed  Google Scholar 

  10. Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 2019;121:725–37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ricordel C, Friboulet L, Facchinetti F, Soria JC. Molecular mechanisms of acquired resistance to third-generation EGFR-TKIs in EGFR T790M-mutant lung cancer. Ann Oncol. 2018;29:i28–37.

    Article  CAS  PubMed  Google Scholar 

  12. Remon J, Lopes G. Upfront osimertinib - winner takes it all?. Nat Rev Clin Oncol. 2020;17:202–3.

    Article  PubMed  Google Scholar 

  13. Pan J, Zhang M, Dong L, Ji S, Zhang J, Zhang S, et al. Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocellular carcinoma. Autophagy. 2023;19:1184–98.

    Article  CAS  PubMed  Google Scholar 

  14. Ipsen MB, Sørensen EMG, Thomsen EA, Weiss S, Haldrup J, Dalby A, et al. A genome-wide CRISPR-Cas9 knockout screen identifies novel PARP inhibitor resistance genes in prostate cancer. Oncogene. 2022;41:4271–81.

    Article  CAS  PubMed  Google Scholar 

  15. Wei L, Lee D, Law CT, Zhang MS, Shen J, Chin DW, et al. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun. 2019;10:4681.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kwon HJ, Jeon HJ, Choi GM, Hwang IK, Kim DW, Moon SM. Tat-CCT2 Protects the Neurons from Ischemic Damage by Reducing Oxidative Stress and Activating Autophagic Removal of Damaged Protein in the Gerbil Hippocampus. Neurochem Res. 2023;48:3585–96.

    Article  CAS  PubMed  Google Scholar 

  17. Ma X, Lu C, Chen Y, Li S, Ma N, Tao X, et al. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell. 2022;185:1325–1345.e1322.

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Ma C, Li Y, Liang Y, Chen T, Han D, et al. Trim21-mediated CCT2 ubiquitination suppresses malignant progression and promotes CD4(+)T cell activation in breast cancer. Cell Death Dis. 2024;15:542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park SH, Jeong S, Kim BR, Jeong YA, Kim JL, Na YJ, et al. Activating CCT2 triggers Gli-1 activation during hypoxic condition in colorectal cancer. Oncogene. 2020;39:136–50.

    Article  CAS  PubMed  Google Scholar 

  20. Guerra C, Molinari M Thioredoxin-Related Transmembrane Proteins: TMX1 and Little Brothers TMX2, TMX3, TMX4 and TMX5. Cells 2020, 9.

  21. Matsuo Y, Akiyama N, Nakamura H, Yodoi J, Noda M, Kizaka-Kondoh S. Identification of a novel thioredoxin-related transmembrane protein. J Biol Chem. 2001;276:10032–8.

    Article  CAS  PubMed  Google Scholar 

  22. Chen F, Cao W, Li X, Chen Z, Ma G, Wang S, et al. Melodinines J Induces Apoptosis in Temozolomide-Resistant Glioma Cells by Disrupting TMX1-Dependent Homeostasis of Endoplasmic Reticulum-Mitochondria-Associated Membrane Contacts. Phytother Res. 2025;39:980–98.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Gibhardt CS, Will T, Stanisz H, Körbel C, Mitkovski M, et al. Redox signals at the ER-mitochondria interface control melanoma progression. Embo j. 2019;38:e100871.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15:554.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Meng Y, Lin W, Wang N, Wei X, Mei P, Wang X, et al. USP7-mediated ERβ stabilization mitigates ROS accumulation and promotes osimertinib resistance by suppressing PRDX3 SUMOylation in non-small cell lung carcinoma. Cancer Lett. 2024;582:216587.

    Article  CAS  PubMed  Google Scholar 

  26. Hong J, Hu K, Yuan Y, Sang Y, Bu Q, Chen G, et al. CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma. J Clin Invest. 2012;122:2165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Remmele W, Stegner HE. [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe. 1987;8:138–40.

    CAS  PubMed  Google Scholar 

  28. Zhao F, Yao Z, Li Y, Zhao W, Sun Y, Yang X, et al. Targeting the molecular chaperone CCT2 inhibits GBM progression by influencing KRAS stability. Cancer Lett. 2024;590:216844.

    Article  CAS  PubMed  Google Scholar 

  29. Ma X, Jia S, Wang G, Liang M, Guo T, Du H, et al. TRIM28 promotes the escape of gastric cancer cells from immune surveillance by increasing PD-L1 abundance. Signal Transduct Target Ther. 2023;8:246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ren J, Wang S, Zong Z, Pan T, Liu S, Mao W, et al. TRIM28-mediated nucleocapsid protein SUMOylation enhances SARS-CoV-2 virulence. Nat Commun. 2024;15:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, et al. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol. 2023;12:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang KR, Zhang YF, Lei HM, Tang YB, Ma CS, Lv QM, et al. Targeting AKR1B1 inhibits glutathione de novo synthesis to overcome acquired resistance to EGFR-targeted therapy in lung cancer. Sci Transl Med. 2021;13:eabg6428.

    Article  CAS  PubMed  Google Scholar 

  33. Tripathi NM, Bandyopadhyay A. High throughput virtual screening (HTVS) of peptide library: Technological advancement in ligand discovery. Eur J Med Chem. 2022;243:114766.

    Article  CAS  PubMed  Google Scholar 

  34. Laface C, Maselli FM, Santoro AN, Iaia ML, Ambrogio F, Laterza M, et al. The Resistance to EGFR-TKIs in Non-Small Cell Lung Cancer: From Molecular Mechanisms to Clinical Application of New Therapeutic Strategies. Pharmaceutics 2023, 15.

  35. Corvaja C, Passaro A, Attili I, Aliaga PT, Spitaleri G, Signore ED, et al. Advancements in fourth-generation EGFR TKIs in EGFR-mutant NSCLC: Bridging biological insights and therapeutic development. Cancer Treat Rev. 2024;130:102824.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng L, Chen X, Zhang L, Qin N, An J, Zhu J, et al. A potential tumor marker: Chaperonin containing TCP‑1 controls the development of malignant tumors (Review). Int J Oncol 2023, 63.

  37. Tracy CM, Gray AJ, Cuéllar J, Shaw TS, Howlett AC, Taylor RM, et al. Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate β-tubulin folding. J Biol Chem. 2014;289:4490–502.

    Article  CAS  PubMed  Google Scholar 

  38. Rüßmann F, Stemp MJ, Mönkemeyer L, Etchells SA, Bracher A, Hartl FU. Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT. Proc Natl Acad Sci USA. 2012;109:21208–15.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kasembeli M, Lau WC, Roh SH, Eckols TK, Frydman J, Chiu W, et al. Modulation of STAT3 folding and function by TRiC/CCT chaperonin. PLoS Biol. 2014;12:e1001844.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shi H, Zhang Y, Wang Y, Fang P, Liu Y, Li W. Restraint of chaperonin containing T-complex protein-1 subunit 3 has antitumor roles in non-small cell lung cancer via affection of YAP1. Toxicol Appl Pharm. 2022;439:115926.

    Article  CAS  Google Scholar 

  41. Ying Z, Tian H, Li Y, Lian R, Li W, Wu S, et al. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J Clin Invest. 2017;127:1725–40.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cui X, Hu ZP, Li Z, Gao PJ, Zhu JY. Overexpression of chaperonin containing TCP1, subunit 3 predicts poor prognosis in hepatocellular carcinoma. World J Gastroenterol. 2015;21:8588–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, Wang Y, Wei Y, Wu J, Zhang P, Shen S, et al. Molecular chaperone CCT3 supports proper mitotic progression and cell proliferation in hepatocellular carcinoma cells. Cancer Lett. 2016;372:101–9.

    Article  CAS  PubMed  Google Scholar 

  44. Czerwińska P, Mazurek S, Wiznerowicz M. The complexity of TRIM28 contribution to cancer. J Biomed Sci. 2017;24:63.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yang Y, Fiskus W, Yong B, Atadja P, Takahashi Y, Pandita TK, et al. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proc Natl Acad Sci USA. 2013;110:6841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qin Y, Li Q, Liang W, Yan R, Tong L, Jia M, et al. TRIM28 SUMOylates and stabilizes NLRP3 to facilitate inflammasome activation. Nat Commun. 2021;12:4794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kabeer FA, Rajalekshmi DS, Nair MS, Prathapan R. Molecular mechanisms of anticancer activity of deoxyelephantopin in cancer cells. Integr Med Res. 2017;6:190–206.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022;22:280–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The National Natural Science Foundation of China (Grant no. 82300230). The National Natural Science Foundation of China (Grant no. 32200619). The National Natural Science Foundation of China (Grant no. 82103350). Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (Grant no. 2024KY1517). Natural Science Foundation of Zhejiang Province (Grant no. LKLY25H160008). Key Project of Zhejiang Natural Science Foundation (Grant no. LKLZ25H010001). The “Spark Program” of Cancer Treatment Clinical Research Innovation and Development Project Fund (Grant no. XH-A037). The Basic Research Project of Taizhou Clinical Medical College, Nanjing Medical University (Grant no. TZKY20230108).

Author information

Authors and Affiliations

Contributions

Chao Cao, Ying Chen and Kaihua Lu planned, reviewed and revised the manuscript. Zihao Ke, Qi Zhang, Xingyu Chen and Qianhua Cao conducted experiments and wrote the draft. Rongrong Jin performed the IHC assay. Gaohua Han, Ke Zhu, Shihui Wei, Jiajin Chen designed figures. Qian Wang, Meiling Zhang, Weina Huang, Kaimin Li, Kunlong Xiong modified the grammar errors and notation mistakes. All authors approved the submission of this manuscript.

Corresponding authors

Correspondence to Kaihua Lu, Ying Chen or Chao Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. All participants provided informed consent. About the use of patient data was approved by the institutional review boards of the Affiliated Taizhou People’s Hospital of Nanjing Medical University (No.KY2023-174-01). Animal experiments involved in this study were approved by the Committee on the Ethics of Animal Experiments of the Nanjing Medical University (No. IACUC-2201042).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, Z., Zhang, Q., Chen, X. et al. CRISPR/Cas9 library screening uncovered CCT2 as a critical driver of acquired resistance to EGFR-targeted therapy by stabilizing TMX1 in non-small cell lung cancer. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01600-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-025-01600-w

Search

Quick links