Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNF220 mediates K63-linked polyubiquitination of STAT3 and aggravates pathological cardiac hypertrophy

Abstract

Pathological cardiac hypertrophy serves as an independent risk factor for heart failure, which is the final stage of numerous cardiovascular diseases. However, the molecular regulatory mechanisms underlying this pathological process are still poorly characterized. The ubiquitin-proteasome system (UPS) is known to influence the development of pathological cardiac hypertrophy by precisely controlling protein function, localization, and proteostasis. The E3 ubiquitin ligase ring finger protein 220 (RNF220), a component of the UPS, was chosen as the research subject to investigate its role in pathological cardiac hypertrophy. Using Ang II-induced cardiac hypertrophy models combined with RNF220 knockout mice, RNF220 overexpression mice, and primary cardiomyocytes to examine the molecular mechanisms by which RNF220 governs pathological cardiac hypertrophy. We found that RNF220 deficiency promotes resistance to angiotensin II infusion by suppressing myocardial hypertrophy and fibrosis, whereas RNF220 overexpression aggravated cardiac dysfunction and hypertrophic responses. Moreover, using proteomic mass spectrometry and co-immunoprecipitation (Co-IP) experiments, we identified a functional interaction between RNF220 and STAT3. Mechanistically, RNF220 directly binds to the SH2 and TAD structural domains of STAT3 via its N-terminal domain, specifically facilitating K63-linked polyubiquitination at lysine residues 615, 626, 631, and 642 of STAT3, thereby stabilizing its protein to drive pro-hypertrophic responses. Critical rescue experiments demonstrated that STAT3 inhibitors or gene silencing effectively restored the ventricular hypertrophy phenotype caused by RNF220 overexpression. Collectively, these findings reveal a novel mechanism by which RNF220 drives pathological myocardial hypertrophy by regulating STAT3 ubiquitination, indicating a potential therapeutic target for heart failure intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNF220 is upregulated in pathological cardiac hypertrophy.
Fig. 2: RNF220 deficiency attenuates Ang II-induced cardiac hypertrophy.
Fig. 3: RNF220 regulates Ang II-induced cardiomyocyte hypertrophy in vitro.
Fig. 4: Interaction between RNF220 and STAT3.
Fig. 5: RNF220 regulates STAT3 protein stability via K63-linked ubiquitination.
Fig. 6: RNF220 regulates STAT3 phosphorylation, nuclear translocation, and transcriptional activity via ubiquitination.
Fig. 7: STAT3 inhibition and targeting its SH2 domain reverse RNF220 overexpression-induced cardiac hypertrophy and fibrosis.

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114:565–71.

    Article  CAS  PubMed  Google Scholar 

  2. Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012;98:5–10.

    Article  CAS  PubMed  Google Scholar 

  3. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7:589–600.

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018;15:387–407.

    Article  CAS  PubMed  Google Scholar 

  5. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens. 2008;21:500–8.

    Article  PubMed  Google Scholar 

  6. Zhang N, Zhang Y, Chen Y, Qian H, Wu B, Lu S, et al. BAF155 promotes cardiac hypertrophy and fibrosis through inhibition of WWP2-mediated PARP1 ubiquitination. Cell Discov. 2023;9:46.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, et al. USP25 Ameliorates Pathological Cardiac Hypertrophy by Stabilizing SERCA2a in Cardiomyocytes. Circ Res. 2023;132:465–80.

    Article  CAS  PubMed  Google Scholar 

  8. Han J, Fang Z, Han B, Ye B, Lin W, Jiang Y, et al. Deubiquitinase JOSD2 improves calcium handling and attenuates cardiac hypertrophy and dysfunction by stabilizing SERCA2a in cardiomyocytes. Nat Cardiovasc Res. 2023;2:764–77.

    Article  CAS  PubMed  Google Scholar 

  9. Sosic I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev. 2022;51:3487–534.

    Article  CAS  PubMed  Google Scholar 

  10. Tang X, Liu X, Sha X, Zhang Y, Zu Y, Fan Q, et al. NEDD4-Mediated GSNOR Degradation Aggravates Cardiac Hypertrophy and Dysfunction. Circ Res. 2025;136:422–38.

    Article  CAS  PubMed  Google Scholar 

  11. van de Vegte YJ, Tegegne BS, Verweij N, Snieder H, van der Harst P. Genetics and the heart rate response to exercise. Cell Mol Life Sci. 2019;76:2391–409.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alter P, Grimm W, Vollrath A, Czerny F, Maisch B. Heart rate variability in patients with cardiac hypertrophy–relation to left ventricular mass and etiology. Am Heart J. 2006;151:829–36.

    Article  PubMed  Google Scholar 

  13. Shanks J, Abukar Y, Lever NA, Pachen M, LeGrice IJ, Crossman DJ, et al. Reverse re-modelling chronic heart failure by reinstating heart rate variability. Basic Res Cardiol. 2022;117:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ozel E, Tastan A, Ozturk A, Ozcan EE. Relationship between Sympathetic Overactivity and Left Ventricular Hypertrophy in Resistant Hypertension. Hellenic J Cardiol. 2015;56:501–6.

    PubMed  Google Scholar 

  15. Tegegne BS, Said MA, Ani A, van Roon AM, Shah S, de Geus EJC, et al. Phenotypic but not genetically predicted heart rate variability associated with all-cause mortality. Commun Biol. 2023;6:1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma P, Yang X, Kong Q, Li C, Yang S, Li Y, et al. The ubiquitin ligase RNF220 enhances canonical Wnt signaling through USP7-mediated deubiquitination of beta-catenin. Mol Cell Biol. 2014;34:4355–66.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Deng T, Zhong P, Lou R, Yang X. RNF220 promotes gastric cancer growth and stemness via modulating the USP22/wnt/beta-catenin pathway. Tissue Cell. 2023;83:102123.

    Article  CAS  PubMed  Google Scholar 

  18. Azhdari M, Zur Hausen A. Wnt/beta-catenin and notch signaling pathways in cardiovascular disease: Mechanisms and therapeutics approaches. Pharmacol Res. 2025;211:107565.

    Article  CAS  PubMed  Google Scholar 

  19. Nayakanti SR, Friedrich A, Sarode P, Jafari L, Maroli G, Boehm M, et al. Targeting Wnt-ss-Catenin-FOSL Signaling Ameliorates Right Ventricular Remodeling. Circ Res. 2023;132:1468–85.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Wang C, Hong X, Miao J, Liao Y, Hou FF, et al. Wnt/beta-catenin signaling mediates both heart and kidney injury in type 2 cardiorenal syndrome. Kidney Int. 2019;95:815–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakao S, Tsukamoto T, Ueyama T, Kawamura T. STAT3 for Cardiac Regenerative Medicine: Involvement in Stem Cell Biology, Pathophysiology, and Bioengineering. Int J Mol Sci. 2020;21:1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pipicz M, Demjan V, Sarkozy M, Csont T. Effects of Cardiovascular Risk Factors on Cardiac STAT3. Int J Mol Sci. 2018;19:3572.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Haghikia A, Stapel B, Hoch M, Hilfiker-Kleiner D. STAT3 and cardiac remodeling. Heart Fail Rev. 2011;16:35–47.

    Article  CAS  PubMed  Google Scholar 

  24. Kleinbongard P. Perspective: mitochondrial STAT3 in cardioprotection. Basic Res Cardiol. 2023;118:32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Comita S, Femmino S, Thairi C, Alloatti G, Boengler K, Pagliaro P, et al. Regulation of STAT3 and its role in cardioprotection by conditioning: focus on non-genomic roles targeting mitochondrial function. Basic Res Cardiol. 2021;116:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Avalle L, Poli V. Nucleus, Mitochondrion, or Reticulum? STAT3 a La Carte. Int J Mol Sci. 2018;19:2820.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res. 2004;95:187–95.

    Article  CAS  PubMed  Google Scholar 

  28. Liu Z, Bian X, Li L, Liu L, Feng C, Wang Y, et al. SENP1-Mediated HSP90ab1 DeSUMOylation in Cardiomyocytes Prevents Myocardial Fibrosis by Paracrine Signaling. Adv Sci. 2024;11:e2400741.

    Article  Google Scholar 

  29. Hilfiker-Kleiner D, Limbourg A, Drexler H. STAT3-mediated activation of myocardial capillary growth. Trends Cardiovasc Med. 2005;15:152–7.

    Article  CAS  PubMed  Google Scholar 

  30. Avalle L, Camporeale A, Morciano G, Caroccia N, Ghetti E, Orecchia V, et al. STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca(2+) fluxes and apoptotic responses. Cell Death Differ. 2019;26:932–42.

    Article  CAS  PubMed  Google Scholar 

  31. Wang P, Xu S, Xu J, Xin Y, Lu Y, Zhang H, et al. Elevated MCU Expression by CaMKIIdeltaB Limits Pathological Cardiac Remodeling. Circulation. 2022;145:1067–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma P, Song NN, Li Y, Zhang Q, Zhang L, Zhang L, et al. Fine-Tuning of Shh/Gli Signaling Gradient by Non-proteolytic Ubiquitination during Neural Patterning. Cell Rep. 2019;28:541–53.e4.

    Article  CAS  PubMed  Google Scholar 

  33. Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 2011;11:629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai C, Tang YD, Zhai J, Zheng C. The RING finger protein family in health and disease. Signal Transduct Target Ther. 2022;7:300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan L, Bu S, Du M, Wang Y, Ju C, Huang D, et al. RNF207 exacerbates pathological cardiac hypertrophy via post-translational modification of TAB1. Cardiovasc Res. 2023;119:183–94.

    Article  CAS  PubMed  Google Scholar 

  36. Yang LL, Xiao WC, Li H, Hao ZY, Liu GZ, Zhang DH, et al. E3 ubiquitin ligase RNF5 attenuates pathological cardiac hypertrophy through STING. Cell Death Dis. 2022;13:889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo X, Ma P, Li Y, Yang Y, Wang C, Xu T, et al. RNF220 mediates K63-linked polyubiquitination of STAT1 and promotes host defense. Cell Death Differ. 2021;28:640–56.

    Article  CAS  PubMed  Google Scholar 

  38. Haghikia A, Ricke-Hoch M, Stapel B, Gorst I, Hilfiker-Kleiner D. STAT3, a key regulator of cell-to-cell communication in the heart. Cardiovasc Res. 2014;102:281–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ye S, Luo W, Khan ZA, Wu G, Xuan L, Shan P, et al. Celastrol Attenuates Angiotensin II-Induced Cardiac Remodeling by Targeting STAT3. Circ Res. 2020;126:1007–23.

    Article  CAS  PubMed  Google Scholar 

  40. Wang M, Han X, Yu T, Wang M, Luo W, Zou C, et al. OTUD1 promotes pathological cardiac remodeling and heart failure by targeting STAT3 in cardiomyocytes. Theranostics. 2023;13:2263–80.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.

    Article  CAS  PubMed  Google Scholar 

  42. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol Cancer. 2020;19:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martinez-Ferriz A, Ferrando A, Fathinajafabadi A, Farras R. Ubiquitin-mediated mechanisms of translational control. Semin Cell Dev Biol. 2022;132:146–54.

    Article  CAS  PubMed  Google Scholar 

  44. Cho JJ, Xu Z, Parthasarathy U, Drashansky TT, Helm EY, Zuniga AN, et al. Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nat Commun. 2019;10:701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruan HH, Zhang Z, Wang SY, Nickels LM, Tian L, Qiao JJ, et al. Tumor Necrosis Factor Receptor-Associated Factor 6 (TRAF6) Mediates Ubiquitination-Dependent STAT3 Activation upon Salmonella enterica Serovar Typhimurium Infection. Infect Immun. 2017;85:e00081-17.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ao YQ, Gao J, Jin C, Wang S, Zhang LC, Deng J, et al. ASCC3 promotes the immunosuppression and progression of non-small cell lung cancer by impairing the type I interferon response via CAND1-mediated ubiquitination inhibition of STAT3. J Immunother Cancer. 2023;11:e007766.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kasembeli MM, Kaparos E, Bharadwaj U, Allaw A, Khouri A, Acot B, et al. Aberrant function of pathogenic STAT3 mutant proteins is linked to altered stability of monomers and homodimers. Blood. 2023;141:1411–24.

    Article  CAS  PubMed  Google Scholar 

  48. Bocchini CE, Nahmod K, Katsonis P, Kim S, Kasembeli MM, Freeman A, et al. Protein stabilization improves STAT3 function in autosomal dominant hyper-IgE syndrome. Blood. 2016;128:3061–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mengmeng Zhao (Central Hospital Affiliated Shandong First Medical University, Jinan) for ubiquitin plasmids; Tianning Wang (Central Hospital Affiliated Shandong First Medical University, Jinan) for plasmid construction and technical support.

Funding

This work was supported by grants from the Natural Science Foundation of Shandong Province (No. ZR2024MH214) and Qingdao Outstanding Health Professional Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

YG designed the study, conducted the major experiments, and drafted the manuscript. ZZ performed the data analysis. XPC, NL and YL assisted with partial experiments. As the project leaders, JG and HYD co-supervised the research, contributed to manuscript writing, provided experimental guidance, and secured funding.

Corresponding authors

Correspondence to Jun Guan or Hongyan Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All animal experiments were approved by the Animal Welfare and Ethics Committee of Jinan Central Hospital (Approval Document No. JNCHIACUC2024-74, JNCHIACUC2024-75) and were conducted in strict accordance with institutional guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhao, Z., Chen, X. et al. RNF220 mediates K63-linked polyubiquitination of STAT3 and aggravates pathological cardiac hypertrophy. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01614-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-025-01614-4

Search

Quick links