Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemotherapy induces multiple sclerosis-like neuropathologies that can be rescued by clobetasol

Abstract

Chemotherapy is essential for cancer management yet frequently accompanied with adverse effects, particularly for temozolomide (TMZ), a frontline chemotherapeutic agent for glioma. Although clinical neurological abnormalities linked to TMZ have been observed, mechanisms underlying TMZ-induced neural impairments remain poorly understood, and effective interventions are lacking. Here, we demonstrated that TMZ chemotherapy induced neurodegenerations that recapitulated pathological features of multiple sclerosis, including demyelination, neuroinflammation and axonal degeneration. In adolescent mice, TMZ treatment resulted in severe white matter damage that spontaneously recovered, whereas in adult mice, moderate myelin damage persisted without recovery within the same timeframe. Importantly, we identified that clobetasol effectively reversed TMZ-induced white matter damage and trends toward anxiety and depression in adult mice by suppressing TMZ-induced AMPK activation and attenuating neuroinflammation, thereby promoting remyelination. Our findings reveal the previously underappreciated neural toxicities associated with TMZ chemotherapy and highlight the therapeutic efficacy of clobetasol in mitigating chemotherapy-induced neural impairment, providing a strategy to enhance the life quality of cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TMZ treatment clinically associates with neurological abnormalities.
Fig. 2: snRNA-seq reveals cellular alterations by TMZ in mouse cortex.
Fig. 3: TMZ induces demyelination in adolescent mice.
Fig. 4: TMZ induces neuroinflammation and axonal degeneration in adolescent mice.
Fig. 5: TMZ activates AMPK signaling in oligodendrocytes.
Fig. 6: Reversal of TMZ-induced neural pathologies by CBT in adult mice.
Fig. 7: Model.

Similar content being viewed by others

Data availability

All relevant materials, including the snRNA-seq and bulk RNA-seq data, are available from the corresponding author upon reasonable request.

References

  1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024:74:229–63.

  2. DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68:8643–53.

    Article  CAS  PubMed  Google Scholar 

  3. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, et al. Glioma. Nat Rev Dis Prim. 2015;1:1–18.

    Google Scholar 

  4. Berger TR, Wen PY, Lang-Orsini M, Chukwueke UN. World Health Organization 2021 Classification of central nervous system tumors and implications for therapy for adult-type gliomas: a review. JAMA Oncol. 2022;8:1493–501.

    Article  PubMed  Google Scholar 

  5. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  6. Mrugala MM, Chamberlain MC. Mechanisms of disease: temozolomide and glioblastoma—look to the future. Nat Clin Pract Oncol. 2008;5:476–86.

    Article  CAS  PubMed  Google Scholar 

  7. Scaringi C, De Sanctis V, Minniti G, Enrici RM. Temozolomide-related hematologic toxicity. Oncol Res Treat. 2013;36:444–9.

    Article  CAS  Google Scholar 

  8. Bae SH, Park M-J, Lee MM, Kim TM, Lee S-H, Cho SY, et al. Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea. J Korean Med Sci. 2014;29:980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diamantis N, Banerji U. Antibody-drug conjugates-an emerging class of cancer treatment. Br J Cancer. 2016;114:362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Q, Qi F, Song X, Di J, Zhang L, Zhou Y, et al. A prospective longitudinal evaluation of cognition and depression in postoperative patients with high-grade glioma following radiotherapy and chemotherapy. J Cancer Res Ther. 2018;14:S1048–S51.

    Article  CAS  PubMed  Google Scholar 

  11. Lombardi G, Bergo E, Del Bianco P, Bellu L, Pambuku A, Caccese M, et al. Quality of Life Perception, Cognitive Function, and Psychological Status in a Real-world Population of Glioblastoma Patients Treated With Radiotherapy and Temozolomide: A Single-center Prospective Study. Am J Clin Oncol. 2018;41:1263–71.

    Article  CAS  PubMed  Google Scholar 

  12. Park DY, Tom MC, Chen Y, Tewari S, Ahluwalia MS, Yu JS, et al. Cognitive function after concurrent temozolomide-based chemoradiation therapy in low-grade gliomas. J Neuro-Oncol. 2022;158:341–8.

    Article  CAS  Google Scholar 

  13. Abete-Fornara G, Bintintan Socaciu P, Fanizzi C, Fiore G, Locatelli M, Caroli M. Neuropsychological functioning during chemotherapy with temozolomide in high-grade glioma patients: a retrospective single centre study. J Neuro-Oncol. 2023;165:561–8.

    Article  CAS  Google Scholar 

  14. Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 2015;522:216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cen L, Carlson BL, Pokorny JL, Mladek AC, Grogan PT, Schroeder MA, et al. Efficacy of protracted temozolomide dosing is limited in MGMT unmethylated GBM xenograft models. Neuro Oncol. 2013;15:735–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai W, Maldonado NV, Cui W, Harutyunyan N, Ji L, Sposto R, et al. Activity of irinotecan and temozolomide in the presence of O6-methylguanine-DNA methyltransferase inhibition in neuroblastoma pre-clinical models. Br J Cancer. 2010;103:1369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elbaz B, Popko B. Molecular Control of Oligodendrocyte Development. Trends Neurosci. 2019;42:263–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang W, Yang W, Yang W, Zhang J, Pang D, Gan L, et al. Identification of Tmem10 as a novel late-stage oligodendrocytes marker for detecting hypomyelination. Int J Biol Sci. 2013;10:33.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018;378:169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121–30.

    Article  CAS  PubMed  Google Scholar 

  21. Yin J, Wang X, Ge X, Ding F, Shi Z, Ge Z, et al. Hypoxanthine phosphoribosyl transferase 1 metabolizes temozolomide to activate AMPK for driving chemoresistance of glioblastomas. Nat Commun. 2023;14:5913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu X, Peng S, Zhao Y, Zhao T, Wang M, Luo L, et al. AMPK Negatively Regulates Peripheral Myelination via Activation of c-Jun. Mol Neurobiol. 2017;54:3554–64.

    Article  CAS  PubMed  Google Scholar 

  23. Guo D, Hildebrandt IJ, Prins RM, Soto H, Mazzotta MM, Dang J, et al. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc Natl Acad Sci USA. 2009;106:12932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang WB, Wang Z, Shu F, Jin YH, Liu HY, Wang QJ, et al. Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J Biol Chem. 2010;285:40461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishiyama A, Shimizu T, Sherafat A, Richardson WD. Life-long oligodendrocyte development and plasticity. Semin Cell Devel Biol. 2021;116:25–37.

    Article  CAS  Google Scholar 

  26. Woo MS, Engler JB, Friese MA. The neuropathobiology of multiple sclerosis. Nat Rev Neurosci. 2024;25:493–513.

    Article  CAS  PubMed  Google Scholar 

  27. Simó M, Rifà-Ros X, Rodriguez-Fornells A, Bruna J. Chemobrain: a systematic review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2013;37:1311–21.

    Article  PubMed  Google Scholar 

  28. Deprez S, Amant F, Yigit R, Porke K, Verhoeven J, Stock JVD, et al. Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Hum Brain Mapp. 2011;32:480–93.

    Article  PubMed  Google Scholar 

  29. Wieneke MH, Dienst ER. Neuropsychological assessment of cognitive functioning following chemotherapy for breast cancer. Psycho-Oncol. 1995;4:61–6.

    Article  Google Scholar 

  30. van Dam FS, Schagen SB, Muller MJ, Boogerd W, vd, Wall E, et al. Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: high-dose versus standard-dose chemotherapy. J Natl Cancer Inst. 1998;90:210–8.

    Article  PubMed  Google Scholar 

  31. Schagen SB, van Dam FS, Muller MJ, Boogerd W, Lindeboom J, Bruning PF. Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer. 1999;85:640–50.

    Article  CAS  PubMed  Google Scholar 

  32. Brezden CB, Phillips KA, Abdolell M, Bunston T, Tannock IF. Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol. 2000;18:2695–701.

    Article  CAS  PubMed  Google Scholar 

  33. Ahles TA, Saykin AJ, Furstenberg CT, Cole B, Mott LA, Skalla K, et al. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol. 2002;20:485–93.

    Article  CAS  PubMed  Google Scholar 

  34. Tchen N, Juffs HG, Downie FP, Yi QL, Hu H, Chemerynsky I, et al. Cognitive function, fatigue, and menopausal symptoms in women receiving adjuvant chemotherapy for breast cancer. J Clin Oncol. 2003;21:4175–83.

    Article  PubMed  Google Scholar 

  35. Wefel JS, Lenzi R, Theriault R, Buzdar AU, Cruickshank S, Meyers CA. Chemobrain’ in breast carcinoma?: a prologue. Cancer. 2004;101:466–75.

    Article  PubMed  Google Scholar 

  36. Scherwath A, Mehnert A, Schleimer B, Schirmer L, Fehlauer F, Kreienberg R, et al. Neuropsychological function in high-risk breast cancer survivors after stem-cell supported high-dose therapy versus standard-dose chemotherapy: evaluation of long-term treatment effects. Ann Oncol. 2006;17:415–23.

    Article  CAS  PubMed  Google Scholar 

  37. Mancuso A, Migliorino M, De Santis S, Saponiero A, De Marinis F. Correlation between anemia and functional/cognitive capacity in elderly lung cancer patients treated with chemotherapy. Ann Oncol. 2006;17:146–50.

    Article  CAS  PubMed  Google Scholar 

  38. Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN, et al. Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment. Cell. 2019;176:43–55 e13.

    Article  CAS  PubMed  Google Scholar 

  39. Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A, Goldstein AK, et al. Loss of Adaptive Myelination Contributes to Methotrexate Chemotherapy-Related Cognitive Impairment. Neuron. 2019;103:250–65 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim T, James BT, Kahn MC, Blanco-Duque C, Abdurrob F, Islam MR, et al. Gamma entrainment using audiovisual stimuli alleviates chemobrain pathology and cognitive impairment induced by chemotherapy in mice. Sci Transl Med. 2024;16:eadf4601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nguyen LD, Ehrlich BE. Cellular mechanisms and treatments for chemobrain: insight from aging and neurodegenerative diseases. EMBO Mol Med. 2020;12:e12075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zou J, Zhou L, Du XX, Ji Y, Xu J, Tian J, et al. Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev Cell. 2011;20:97–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zou Y, Jiang W, Wang J, Li Z, Zhang J, Bu J, et al. Oligodendrocyte precursor cell-intrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain. J Neurosci. 2014;34:15764–78.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gonzalez A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab. 2020;31:472–92.

    Article  CAS  PubMed  Google Scholar 

  45. Kaiser J, Bledowski C, Dietrich J. Neural correlates of chemotherapy-related cognitive impairment. Cortex. 2014;54:33–50.

    Article  PubMed  Google Scholar 

  46. Vicario N, Spitale FM, Tibullo D, Giallongo C, Amorini AM, Scandura G, et al. Clobetasol promotes neuromuscular plasticity in mice after motoneuronal loss via sonic hedgehog signaling, immunomodulation and metabolic rebalancing. Cell Death Dis. 2021;12:625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cully M. Repurposing for remyelination. Nat Rev Drug Discov. 2015;14:383.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kunlong Zhang for the technical help on confocal imaging, and Dr. Shiping Liao, Zhangyu He and Baichuan Li for the support in mouse experiments.

Funding

This work was supported by grants from National Natural Science Foundation of China (No. 82272644 to Y.L., 82372836 to W.Y., and 81571195 to M.C.), and Sichuan Science and Technology Program (No. 2023YFQ0002 to Y.L. and 2023YFSY0042 to W.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Qiuyun Yuan, Wanchun Yang, Yanhui Liu, Mina Chen. Methodology: Qiuyun Yuan, Wanchun Yang, Siliang Chen, Yunbo Yuan, Jingwen Gong, Yue Qin. Investigation: Qiuyun Yuan, Wanchun Yang, Siliang Chen, Jingwen Gong, Tengfei Li, Mingrong Zuo, Yuting Shu, Yuze He, Zhihao Wang, Xiaoqiang Xia, and Yiyuan Cui. Visualization: Qiuyun Yuan, Wanchun Yang, Siliang Chen, Yunbo Yuan. Funding acquisition: Wanchun Yang, Yanhui Liu and Mina Chen. Project administration: Yanhui Liu. Supervision: Yanhui Liu and Mina Chen. Writing – original draft: Qiuyun Yuan and Wanchun Yang. Writing – review & editing: Yanhui Liu and Mina Chen.

Corresponding authors

Correspondence to Yanhui Liu or Mina Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

All human studies were approved by the Institutional Review Board of West China Hospital of Sichuan University (No. 20241074) and all patients provided written informed consent. For animal works, ethical guidelines for animal experimentation were followed, with approval from the Institutional Animal Care and Use Committees of West China Hospital of Sichuan University (No. 20220228009).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Q., Yang, W., Chen, S. et al. Chemotherapy induces multiple sclerosis-like neuropathologies that can be rescued by clobetasol. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01635-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-025-01635-z

Search

Quick links