Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

cGAS restricts PARP1-mediated microhomology-mediated end joining by suppressing poly-ADP-ribosylation

Abstract

Repair of DNA double-strand breaks (DSBs) is essential for cells to maintain genome stability and cell survival. While cyclic GMP-AMP synthase (cGAS) is best known for its role in innate immunity, emerging evidence reveals that it plays regulatory roles in DNA damage response. In this study, we demonstrate that cGAS suppresses PARP1-mediated poly(ADP-ribose) (PAR) formation at both double-stranded DNA (dsDNA) and DNA:RNA hybrids. As a result, cGAS deficiency enhances PARP1-mediated microhomology-mediated end joining (MMEJ). Since MMEJ competes with transcription-coupled homologous recombination (TC-HR) at actively transcribed genomic regions, cGAS-mediated suppression of MMEJ consequently leads to efficient TC-HR with increased recruitment of RAD52 and RAD51. Mechanistically, the zinc finger domain of cGAS binds PAR, inhibiting PARP1 activation. In prostate cancer cells, loss of cGAS increases dependency on PARP1, rendering them more sensitive to PARP inhibitors. Collectively, our findings uncover a noncanonical role for cGAS in negatively regulating PARP1-mediated MMEJ and suggest its potential as a therapeutic biomarker in prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cGAS negatively regulates PARP1-mediated PARylation and MMEJ repair.
Fig. 2: The zinc finger mediated PAR binding of cGAS is required to prevent PARP1 activation and MMEJ.
Fig. 3: cGAS indirectly promotes TC-HR through inhibiting PARP1-medidated MMEJ.
Fig. 4: Loss of cGAS impairs resolution of γH2AX and R-Loops at DSBs at transcriptionally active sites.
Fig. 5: cGAS deficiency creates vulnerability in prostate cancer cells.
Fig. 6: A working model for suppression of PARP1 activation by cGAS at transcriptionally active genomic regions.

Similar content being viewed by others

Data availability

All data is contained within the manuscript and/or supplementary files. The original western blot images are provided in the Supplementary File.

References

  1. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends cell Biol. 2016;26:52–64.

    Article  CAS  PubMed  Google Scholar 

  2. Schwer B, Wei PC, Chang AN, Kao J, Du Z, Meyers RM, et al. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells. Proc Natl Acad Sci USA. 2016;113:2258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wei PC, Chang AN, Kao J, Du Z, Meyers RM, Alt FW, et al. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell. 2016;164:644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marnef A, Cohen S, Legube G. Transcription-coupled DNA double-strand break repair: active genes need special care. J Mol Biol. 2017;429:1277–88.

    Article  CAS  PubMed  Google Scholar 

  5. Yang H, Lachtara EM, Ran X, Hopkins J, Patel PS, Zhu X, et al. The RNA m5C modification in R-loops as an off switch of Alt-NHEJ. Nat Commun. 2023;14:6114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang H, Lan L. Transcription-coupled DNA repair protects genome stability upon oxidative stress-derived DNA strand breaks. FEBS Lett. 2024.

  7. Marnef A, Legube G. R-loops as Janus-faced modulators of DNA repair. Nat cell Biol. 2021;23:305–13.

    Article  CAS  PubMed  Google Scholar 

  8. Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol cell Biol. 2022;23:521–40.

    Article  CAS  PubMed  Google Scholar 

  9. Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat Struct Mol Biol. 2014;21:366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wei L, Nakajima S, Bohm S, Bernstein KA, Shen Z, Tsang M, et al. DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proc Natl Acad Sci USA. 2015;112:E3495–3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ouyang J, Yadav T, Zhang JM, Yang H, Rheinbay E, Guo H, et al. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature. 2021;594:283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teng Y, Yadav T, Duan M, Tan J, Xiang Y, Gao B, et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat Commun. 2018;9:4115.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen H, Yang H, Zhu X, Yadav T, Ouyang J, Truesdell SS, et al. m(5)C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat Commun. 2020;11:2834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sallmyr A, Tomkinson AE. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J Biol Chem. 2018;293:10536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Q, Palomero L, Moore J, Guix I, Espin R, Aytes A, et al. Loss of TGFbeta signaling increases alternative end-joining DNA repair that sensitizes to genotoxic therapies across cancer types. Sci Transl Med. 2021, 13.

  16. Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic acids Res. 2006;34:6170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patterson-Fortin J, D’Andrea AD. Exploiting the microhomology-mediated end-joining pathway in cancer therapy. Cancer Res. 2020;80:4593–4600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  CAS  PubMed  Google Scholar 

  19. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature. 2018;563:131–6.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang H, Xue X, Panda S, Kawale A, Hooy RM, Liang F, et al. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 2019;38:e102718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhen Z, Chen Y, Wang H, Tang H, Zhang H, Liu H, et al. Nuclear cGAS restricts L1 retrotransposition by promoting TRIM41-mediated ORF2p ubiquitination and degradation. Nat Commun. 2023;14:8217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen H, Chen H, Zhang J, Wang Y, Simoneau A, Yang H, et al. cGAS suppresses genomic instability as a decelerator of replication forks. Sci Adv. 2020, 6.

  24. Gentili M, Lahaye X, Nadalin F, Nader GPF, Puig Lombardi E, Herve S, et al. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep. 2019;26:2377–2393 e2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luedeman ME, Stroik S, Feng W, Luthman AJ, Gupta GP, Ramsden DA. Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection. Nat Commun. 2022;13:4547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laspata N, Kaur P, Mersaoui SY, Muoio D, Liu ZS, Bannister MH, et al. PARP1 associates with R-loops to promote their resolution and genome stability. Nucleic acids Res. 2023;51:2215–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lan L, Nakajima S, Wei L, Sun L, Hsieh CL, Sobol RW, et al. Novel method for site-specific induction of oxidative DNA damage reveals differences in recruitment of repair proteins to heterochromatin and euchromatin. Nucleic acids Res. 2014;42:2330–45.

    Article  CAS  PubMed  Google Scholar 

  28. Houl JH, Ye Z, Brosey CA, Balapiti-Modarage LPF, Namjoshi S, Bacolla A, et al. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat Commun. 2019;10:5654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, et al. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature. 2008;451:81–85.

    Article  CAS  PubMed  Google Scholar 

  30. Kamaletdinova T, Fanaei-Kahrani Z, Wang ZQ. The enigmatic function of PARP1: from PARylation activity to PAR readers. Cells. 2019, 8.

  31. Wang F, Zhao M, Chang B, Zhou Y, Wu X, Ma M, et al. Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS. Mol cell. 2022;82:2032–2049 e2037.

    Article  CAS  PubMed  Google Scholar 

  32. Verhagen PC, Hermans KG, Brok MO, van Weerden WM, Tilanus MG, de Weger RA, et al. Deletion of chromosomal region 6q14-16 in prostate cancer. Int J cancer. 2002;102:142–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kluth M, Jung S, Habib O, Eshagzaiy M, Heinl A, Amschler N, et al. Deletion lengthening at chromosomes 6q and 16q targets multiple tumor suppressor genes and is associated with an increasingly poor prognosis in prostate cancer. Oncotarget. 2017;8:108923–35.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173:291–304 e296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsujino T, Takai T, Hinohara K, Gui F, Tsutsumi T, Bai X, et al. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun. 2023;14:252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, et al. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ. 2024;31:792–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barnett KC, Coronas-Serna JM, Zhou W, Ernandes MJ, Cao A, Kranzusch PJ, et al. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA. Cell. 2019;176:1432–1446 e1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang H, Lan L. Immunostaining and protein pull-down of methyl-5-cytosine-marked RNA:DNA hybrids. Methods Mol Biol. 2022;2528:271–6.

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen HD, Yadav T, Giri S, Saez B, Graubert TA, Zou L. Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1. Mol cell. 2017;65:832–847 e834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Institutes of Health R01CA262524 (LJ), R01CA279410 (LJ), R01CA282939 (LL); Department of Defense W81XWH-22-1-0477 (LJ).

Author information

Authors and Affiliations

Contributions

HY conducted the major experiments and data analysis. BG, BW, WL, XZ, LP, JL, and FG participated in the experiments and data analysis. WZ participated in experimental design and data analysis. LJ and LL provided overall experimental guidance. All authors acknowledge their specific contributions and have reviewed the manuscript.

Corresponding authors

Correspondence to Li Jia or Li Lan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

Ethics approval was not required for this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Gao, B., Wu, B. et al. cGAS restricts PARP1-mediated microhomology-mediated end joining by suppressing poly-ADP-ribosylation. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01637-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-025-01637-x

Search

Quick links