Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Galectin-9 activates microglial asparagine endopeptidase and promotes α-synuclein pathology in Parkinson’s disease

Abstract

Parkinson’s disease (PD) is characterized by the aggregation of misfolded α-synuclein (α-syn) and microglial activation. Galectin-9 (Gal-9) is an immunoregulatory mediator generated by microglia. Here, we found that α-syn fibrils are internalized by microglia and processed by microglial protease AEP, generating α-syn species with enhanced seeding activity and neurotoxicity. Notably, the uptake of α-syn fibrils by microglia leads to increased expression of Gal-9, which further promotes the production of toxic α-syn species via activation of the C/EBPβ/AEP axis. Knockout of Gal-9 attenuates α-syn pathology, dopaminergic neuronal loss, and motor impairments in a mouse model induced by intrastriatal injection of α-syn PFFs. Intrastriatal injection of Gal-9 promoted PD-like phenotypes induced by α-syn PFFs. Furthermore, the detrimental effect of Gal-9 was attenuated by the knockout of AEP. These observations illustrate the key role of Gal-9 in promoting α-syn pathology and neurodegeneration via the C/EBPβ/AEP axis in PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microglia milieu promotes the seeding and neurotoxicity of α-syn.
Fig. 2: Microglial AEP cleaves α-syn and enhances its seeding and neurotoxicity.
Fig. 3: Gal-9 promotes microglial AEP activation in vitro.
Fig. 4: Gal-9 and AEP are upregulated in PD.
Fig. 5: Knockout of Gal-9 reduces the spread of α-syn pathology in vivo.
Fig. 6: Knockout of Gal-9 attenuates PD-like motor deficits.
Fig. 7: Gal-9 aggravates α-syn pathology in a PD mouse model.
Fig. 8: Schematic illustration of Gal-9-C/EBPβ/AEP-mediated α-synuclein cleavage in microglia and its contribution to neuronal damage.

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Przedborski S. The two-century journey of Parkinson disease research. Nat Rev Neurosci. 2017;18:251–9.

    Article  PubMed  CAS  Google Scholar 

  2. Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, et al. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA. 2009;106:20051–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science. 2020;367:528–37.

    Article  PubMed  Google Scholar 

  4. Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther. 2023;8:359.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xia Y, Zhang G, Kou L, Yin S, Han C, Hu J, et al. Reactive microglia enhance the transmission of exosomal α-synuclein via toll-like receptor 2. Brain. 2021;144:2024–37.

    Article  PubMed  Google Scholar 

  6. Bido S, Muggeo S, Massimino L, Marzi MJ, Giannelli SG, Melacini E, et al. Microglia-specific overexpression of α-synuclein leads to severe dopaminergic neurodegeneration by phagocytic exhaustion and oxidative toxicity. Nat Commun. 2021;12:6237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mariño KV, Cagnoni AJ, Croci DO, Rabinovich GA. Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov. 2023;22:295–316.

    Article  PubMed  Google Scholar 

  8. Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008;10:e17.

    Article  PubMed  Google Scholar 

  9. John S, Mishra R. mRNA transcriptomics of galectins unveils heterogeneous organization in mouse and human brain. Front Mol Neurosci. 2016;9:139.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, et al. Galectins control mTOR in response to endomembrane damage. Mol Cell. 2018;70:120–35.e128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jia J, Bissa B, Brecht L, Allers L, Choi SW, Gu Y, et al. AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system. Mol Cell. 2020;77:951–69.e959.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liang T, Ma C, Wang T, Deng R, Ding J, Wang W, et al. Galectin-9 promotes neuronal restoration via binding TLR-4 in a rat intracerebral hemorrhage model. Neuromol Med. 2021;23:267–84.

    Article  CAS  Google Scholar 

  13. Steelman AJ, Li J. Astrocyte galectin-9 potentiates microglial TNF secretion. J Neuroinflammation. 2014;11:144.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Duan H, Zhao S, Xiang J, Ju C, Chen X, Gramaglia I, et al. Targeting the CD146/Galectin-9 axis protects the integrity of the blood-brain barrier in experimental cerebral malaria. Cell Mol Immunol. 2021;18:2443–54.

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Niu Y, Yue CX, Fu S, Wang RT. Increased ileal bile acid binding protein and galectin-9 are associated with mild cognitive impairment and Alzheimer’s disease. J Psychiatr Res. 2019;119:102–6.

    Article  PubMed  Google Scholar 

  16. Zhang Z, Kang SS, Liu X, Ahn EH, Zhang Z, He L, et al. Asparagine endopeptidase cleaves α-synuclein and mediates pathologic activities in Parkinson’s disease. Nat Struct Mol Biol. 2017;24:632–42.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fields J, Ghorpade A. C/EBPβ regulates multiple IL-1β-induced human astrocyte inflammatory genes. J Neuroinflammation. 2012;9:177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wang ZH, Gong K, Liu X, Zhang Z, Sun X, Wei ZZ, et al. C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer’s disease. Nat Commun. 2018;9:1784.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu Z, Xia Y, Wang Z, Su Kang S, Lei K, Liu X, et al. C/EBPβ/δ-secretase signaling mediates Parkinson’s disease pathogenesis via regulating transcription and proteolytic cleavage of α-synuclein and MAOB. Mol Psychiatry. 2021;26:568–85.

    Article  PubMed  CAS  Google Scholar 

  20. Meng L, Zou L, Xiong M, Chen J, Zhang X, Yu T, et al. A synapsin Ⅰ cleavage fragment contributes to synaptic dysfunction in Alzheimer’s disease. Aging Cell. 2022;21:e13619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Volpicelli-Daley LA, Luk KC, Lee VM. Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous α-synuclein to Lewy body and Lewy neurite-like aggregates. Nat Protoc. 2014;9:2135–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Pan L, Li C, Meng L, Tian Y, He M, Yuan X, et al. Tau accelerates α-synuclein aggregation and spreading in Parkinson’s disease. Brain. 2022;145:3454–71.

    Article  PubMed  Google Scholar 

  23. Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A, Robinson JL, et al. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature. 2018;557:558–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Abounit S, Delage E, Zurzolo C. Identification and characterization of tunneling nanotubes for intercellular trafficking. Current Protocols in Cell Biology. 2015;67:12.10.11–12.10.21.

    Article  Google Scholar 

  25. Chakraborty R, Nonaka T, Hasegawa M, Zurzolo C. Tunnelling nanotubes between neuronal and microglial cells allow bi-directional transfer of α-Synuclein and mitochondria. Cell Death Dis. 2023;14:329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang Z, Song M, Liu X, Kang SS, Kwon IS, Duong DM, et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat Med. 2014;20:1254–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Liu Z, Sokratian A, Duda AM, Xu E, Stanhope C, Fu A, et al. Anionic nanoplastic contaminants promote Parkinson’s disease-associated α-synuclein aggregation. Sci Adv. 2023;9:eadi8716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mao X, Gu H, Kim D, Kimura Y, Wang N, Xu E, et al. Aplp1 interacts with Lag3 to facilitate transmission of pathologic α-synuclein. Nat Commun. 2024;15:4663.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dorion MF, Yaqubi M, Senkevich K, Kieran NW, MacDonald A, Chen CXQ, et al. MerTK is a mediator of alpha-synuclein fibril uptake by human microglia. Brain. 2024;147:427–43.

    Article  PubMed  Google Scholar 

  30. Meng L, Liu C, Li Y, Chen G, Xiong M, Yu T, et al. The yeast prion protein Sup35 initiates α-synuclein pathology in mouse models of Parkinson’s disease. Sci Adv. 2023;9:eadj1092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhao L, Hua T, Crowley C, Ru H, Ni X, Shaw N, et al. Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage. Cell Res. 2014;24:344–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Siew JJ, Chern Y. Microglial lectins in health and neurological diseases. Front Mol Neurosci. 2018;11:158.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee C, Yu D, Kim HS, Kim KS, Chang CY, Yoon HJ, et al. Galectin-9 mediates the functions of microglia in the hypoxic brain tumor microenvironment. Cancer Res. 2024;84:3788–802.

    Article  PubMed  CAS  Google Scholar 

  34. Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 2021;12:832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Boza-Serrano A, Ruiz R, Sanchez-Varo R, García-Revilla J, Yang Y, Jimenez-Ferrer I, et al. Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol. 2019;138:251–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Panda SK, Facchinetti V, Voynova E, Hanabuchi S, Karnell JL, Hanna RN, et al. Galectin-9 inhibits TLR7-mediated autoimmunity in murine lupus models. J Clin Invest. 2018;128:1873–87.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev. 2021;20:102847.

    Article  PubMed  CAS  Google Scholar 

  39. Chen ZQ, Yu H, Li HY, Shen HT, Li X, Zhang JY, et al. Negative regulation of glial Tim-3 inhibits the secretion of inflammatory factors and modulates microglia to antiinflammatory phenotype after experimental intracerebral hemorrhage in rats. CNS Neurosci Ther. 2019;25:674–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lerman BJ, Hoffman EP, Sutherland ML, Bouri K, Hsu DK, Liu FT, et al. Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Behav. 2012;2:563–75.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stancic M, van Horssen J, Thijssen VL, Gabius HJ, van der Valk P, Hoekstra D, et al. Increased expression of distinct galectins in multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2011;37:654–71.

    Article  PubMed  CAS  Google Scholar 

  42. Shahnawaz M, Mukherjee A, Pritzkow S, Mendez N, Rabadia P, Liu X, et al. Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature. 2020;578:273–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang J, Dai L, Chen S, Zhang Z, Fang X, Zhang Z. Protein-protein interactions regulating α-synuclein pathology. Trends Neurosci. 2024;47:209–26.

    Article  PubMed  CAS  Google Scholar 

  44. Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, et al. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun. 2020;11:1386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. George S, Rey NL, Tyson T, Esquibel C, Meyerdirk L, Schulz E, et al. Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson’s disease. Mol Neurodegener. 2019;14:34.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Suthar SK, Lee SY. Truncation or proteolysis of α-synuclein in Parkinsonism. Ageing Res Rev. 2023;90:101978.

    Article  PubMed  CAS  Google Scholar 

  47. Dilsizoglu Senol A, Samarani M, Syan S, Guardia CM, Nonaka T, Liv N, et al. α-Synuclein fibrils subvert lysosome structure and function for the propagation of protein misfolding between cells through tunneling nanotubes. PLOS Biology. 2021;19:e3001287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Grudina C, Kouroupi G, Nonaka T, Hasegawa M, Matsas R, Zurzolo C. Human NPCs can degrade α-syn fibrils and transfer them preferentially in a cell contact-dependent manner possibly through TNT-like structures. Neurobiol Dis. 2019;132:104609.

    Article  PubMed  CAS  Google Scholar 

  49. Scheiblich H, Dansokho C, Mercan D, Schmidt SV, Bousset L, Wischhof L, et al. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell. 2021;184:5089–106.e5021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chen K, Martens YA, Meneses A, Ryu DH, Lu W, Raulin AC, et al. LRP1 is a neuronal receptor for α-synuclein uptake and spread. Mol Neurodegener. 2022;17:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Choi YR, Park SJ, Park SM. Molecular events underlying the cell-to-cell transmission of α-synuclein. FEBS J. 2021;288:6593–602.

    Article  PubMed  CAS  Google Scholar 

  52. Kaur U, Lee JC. Membrane interactions of α-Synuclein Probed by Neutrons and Photons. Accounts Chem Res. 2021;54:302–10.

    Article  CAS  Google Scholar 

  53. Stykel MG, Humphries KM, Kamski-Hennekam E, Buchner-Duby B, Porte-Trachsel N, Ryan T, et al. α-Synuclein mutation impairs processing of endomembrane compartments and promotes exocytosis and seeding of α-synuclein pathology. Cell Reports. 2021;35:109099.

    Article  PubMed  CAS  Google Scholar 

  54. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586:417–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science (New York, NY). 2020;370:66–9.

    Article  CAS  Google Scholar 

  56. Zhao S, Umpierre AD, Wu L-J. Tuning neural circuits and behaviors by microglia in the adult brain. Trends in Neurosciences. 2024;47:181–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Gresa-Arribas N, Serratosa J, Saura J, Solà C. Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti-inflammatory and neuroprotective effects. J Neurochem. 2010;115:526–36.

    Article  PubMed  CAS  Google Scholar 

  58. Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: basic biology and roles in the CNS. Prog Neurobiol. 2015;132:1–33.

    Article  PubMed  CAS  Google Scholar 

  59. Qi H, Li Y, Liu X, Jiang Y, Li Z, Xu X, et al. Tim-3 regulates the immunosuppressive function of decidual MDSCs via the Fyn-STAT3-C/EBPβ pathway during Toxoplasma gondii infection. PLOS Pathogens. 2023;19:e1011329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhang S, Liu YQ, Jia C, Lim YJ, Feng G, Xu E, et al. Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson’s disease. Proc Natl Acad Sci USA. 2021;118:e2011196118.

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 82271447 and 81771382 to ZZ, No. 81901090 to LM, No. 82301598 to GZ), the Innovative Research Groups of Hubei Province (2022CFA026 to ZZ), Shenzhen Medical Research Fund (B2404001 to ZZ), and the New 20 Terms of Universities in Jinan grant (No. 202228022 to SL).

Author information

Authors and Affiliations

Contributions

ZZ conceived and supervised the project. QP performed the majority of experiments and data analysis, and drafted the manuscript. GZ conducted experiments involving primary neurons, developed methodology, and revised the paper. XG, YL, and LP performed the immunostaining of mouse brain sections. LM and JX helped with the cell culture and animal experiments. XX and SL helped in the analysis and interpretation of data. All authors critically read and revised the manuscript.

Corresponding author

Correspondence to Zhentao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All of the animal experiments were performed by the relevant guidelines and regulations and were approved by the ethical committees of Renmin Hospital, Wuhan University.

Consent for publication

All authors have consented for the publication of manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Zhang, G., Guo, X. et al. Galectin-9 activates microglial asparagine endopeptidase and promotes α-synuclein pathology in Parkinson’s disease. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01640-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-025-01640-2

Search

Quick links