Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting MMA-induced USP36 methylmalonylation to suppress macrophage polarization and tumor progression in clear-cell renal cell carcinoma

Abstract

Metabolic reprogramming is a hallmark of clear-cell renal cell carcinoma (ccRCC), driving tumor progression and altering the tumor microenvironment (TME), making it crucial to understand metabolic dysregulation in ccRCC and to identify new therapeutic targets for patients. In this study, metabolomic profiling identified elevated levels of methylmalonic acid (MMA) in ccRCC, attributed to downregulation of methylmalonyl-CoA mutase (MMUT). MMA produced by ccRCC accumulates in the TME and activates the suppressor of fused (SUFU)-regulated Hedgehog signaling pathway in a dose-dependent manner, promoting M2 polarization of macrophages and tumor progression. Mechanistically, MMA induces methylmalonylation at the K499 site of ubiquitin-specific peptidase 36 (USP36), inhibiting USP36-mediated deubiquitination and SUMOylation of SUFU, thereby promoting the expression of GLI family zinc finger 1 (GLI1) and its target genes. Both in vitro and in vivo experiments demonstrated that a low branched-chain amino acids (BCAAs) diet or treatment with the de-methylmalonylation agent MC3138 effectively inhibited M2 polarization of macrophages and tumor progression. These findings emphasize the critical role of MMA in ccRCC pathogenesis and suggest that combining a low-BCAAs diet with MC3138 therapy may offer a promising treatment strategy for ccRCC patients with elevated MMA levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MMA accumulated in ccRCC and MMUT downregulation was the point of increased MMA levels.
Fig. 2: MMA promoted tumor progression in ccRCC.
Fig. 3: MMA-induced M2-macrophage promoted tumor progression in ccRCC.
Fig. 4: MMA promoted tumor progression and M2 polarization of macrophage by the Hedgehog signaling pathway.
Fig. 5: MMA-induced methylmalonylation of USP36 activated the Hedgehog signaling pathway.
Fig. 6: USP36 regulated the Hedgehog signaling pathway by disrupting the balance between ubiquitination and SUMOylation of SUFU.
Fig. 7: Combination of low-BCAAs diet and MC3138 suppressed tumor progression and macrophage M2 polarization in ccRCC.
Fig. 8: The mechanism scheme of MMA in ccRCC.

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available in NHANES database (https://www.cdc.gov/nchs/nhanes/index.htm), TCGA-KIRC database (https://portal.gdc.cancer.gov), ICGC-RECA database (https://dcc.icgc.org/), and CPTAC3 database (https://registry.opendata.aws/cptac-3). The sequencing datasets from RNA-seq, Unbiased-broad-spectrum metabolomics have been deposited in Science Data Bank (https://www.scidb.cn/s/UZnqaq). The MS datasets have been also deposited in Science Data Bank (https://www.scidb.cn/s/UZnqaq). Other data generated in this study are available upon request from the corresponding author.

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: still emerging. Cell Metab. 2022;34:355–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:eaaw5473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Investig. 2019;129:3006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat Rev Cancer. 2022;22:157–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wettersten HI, Aboud OA, Lara PN Jr, Weiss RH. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol. 2017;13:410–9.

    Article  CAS  PubMed  Google Scholar 

  7. Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 2017;8:1769.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J Clin. 2017;67:507–24.

    PubMed  Google Scholar 

  9. Yang M, Soga T, Pollard PJ. Oncometabolites: linking altered metabolism with cancer. J Clin Investig. 2013;123:3652–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valcarcel-Jimenez L, Frezza C. Fumarate hydratase (FH) and cancer: a paradigm of oncometabolism. Br J Cancer. 2023;129:1546–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kinch L, Grishin NV, Brugarolas J. Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2. Cancer Cell. 2011;20:418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yong C, Stewart GD, Frezza C. Oncometabolites in renal cancer. Nat Rev Nephrol. 2020;16:156–72.

    Article  CAS  PubMed  Google Scholar 

  13. Gomes AP, Ilter D, Low V, Endress JE, Fernández-García J, Rosenzweig A, et al. Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature. 2020;585:283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tejero J, Lazure F, Gomes AP. Methylmalonic acid in aging and disease. Trends Endocrinol Metab. 2024;35:188–200.

    Article  CAS  PubMed  Google Scholar 

  15. Head PE, Myung S, Chen Y, Schneller JL, Wang C, Duncan N, et al. Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin. Sci Transl Med. 2022;14:eabn4772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watson MJ, Delgoffe GM. Fighting in a wasteland: deleterious metabolites and antitumor immunity. J Clin Investig. 2022;132:e148549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 2021;591:645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, et al. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Mol Cell. 2020;77:213–27.e5.

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Low V, Luga V, Sun J, Earlie E, Parang B, et al. Tumor-produced and aging-associated oncometabolite methylmalonic acid promotes cancer-associated fibroblast activation to drive metastatic progression. Nat Commun. 2022;13:6239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen TN, Nguyen-Tran HH, Chen CY, Hsu T. IL6 and CCL18 mediate cross-talk between VHL-deficient kidney cells and macrophages during development of renal cell carcinoma. Cancer Res. 2022;82:2716–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Su B, Han H, Gong Y, Li X, Ji C, Yao J, et al. Let-7d inhibits intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-13 and IL-10. Cancer Immunol Immunother. 2021;70:1619–34.

    Article  CAS  PubMed  Google Scholar 

  22. Montgomery JA, Mamer OA, Scriver CR. Metabolism of methylmalonic acid in rats. Is methylmalonyl-coenzyme a racemase deficiency symptomatic in man?. J Clin Investig. 1983;72:1937–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu T, Shukla SK, Vernucci E, He C, Wang D, King RJ, et al. Metabolic rewiring by loss of Sirt5 promotes Kras-Induced pancreatic cancer progression. Gastroenterology. 2021;161:1584–600.

    Article  CAS  PubMed  Google Scholar 

  24. Miao D, Shi J, Lv Q, Tan D, Zhao C, Xiong Z, et al. NAT10-mediated ac(4)C-modified ANKZF1 promotes tumor progression and lymphangiogenesis in clear-cell renal cell carcinoma by attenuating YWHAE-driven cytoplasmic retention of YAP1. Cancer Commun. 2024;44:361–83.

    Article  Google Scholar 

  25. Shi J, Lv Q, Miao D, Xiong Z, Wei Z, Wu S, et al. HIF2α promotes cancer metastasis through TCF7L2-dependent fatty acid synthesis in ccRCC. Research. 2024;7:0322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ham SJ, Lee D, Xu WJ, Cho E, Choi S, Min S, et al. Loss of UCHL1 rescues the defects related to Parkinson’s disease by suppressing glycolysis. Sci Adv. 2021;7:eabg4574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Shi F, Hu J, Xie L, Zhao L, Tang M, et al. Stabilization of p18 by deubiquitylase CYLD is pivotal for cell cycle progression and viral replication. NPJ Precis Oncol. 2021;5:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Li Y, Dai RS, Savage JC, Shinde U, Klimek J, et al. The ubiquitin-specific protease USP36 SUMOylates EXOSC10 and promotes the nucleolar RNA exosome function in rRNA processing. Nucleic Acids Res. 2023;51:3934–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue Y, Zhou F, Fu C, Xu Y, Yao X. SUMOsp: a web server for sumoylation site prediction. Nucleic Acids Res. 2006;34:W254–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, et al. GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res. 2014;42:W325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A, et al. An Integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell. 2016;29:104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med. 2018;24:1192–203.

    Article  CAS  PubMed  Google Scholar 

  33. Li M, Yang Y, Xiong L, Jiang P, Wang J, Li C. Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol. 2023;16:80.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen S, Saeed A, Liu Q, Jiang Q, Xu H, Xiao GG, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8:207.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ruiz i Altaba A, Palma V, Dahmane N. Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci. 2002;3:24–33.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, Brickner JR, Majid MC, Mosammaparast N. Crosstalk between ubiquitin and other post-translational modifications on chromatin during double-strand break repair. Trends Cell Biol. 2014;24:426–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vu LD, Gevaert K, De Smet I. Protein language: post-translational modifications talking to each other. Trends Plant Sci. 2018;23:1068–80.

    Article  CAS  PubMed  Google Scholar 

  38. Yan Z, Cheng M, Hu G, Wang Y, Zeng S, Huang A, et al. Positive feedback of SuFu negating protein 1 on Hedgehog signaling promotes colorectal tumor growth. Cell Death Dis. 2021;12:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Infante P, Faedda R, Bernardi F, Bufalieri F, Lospinoso Severini L, Alfonsi R, et al. Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis. Nat Commun. 2018;9:976.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Raducu M, Fung E, Serres S, Infante P, Barberis A, Fischer R, et al. SCF (Fbxl17) ubiquitylation of Sufu regulates Hedgehog signaling and medulloblastoma development. Embo J. 2016;35:1400–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan Y, Xu Z, Huang J, Guo G, Gao M, Kim W, et al. The deubiquitinase USP36 Regulates DNA replication stress and confers therapeutic resistance through PrimPol stabilization. Nucleic Acids Res. 2020;48:12711–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yue S, Chen Y, Cheng SY. Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene. 2009;28:492–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011;44:325–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ryu H, Sun XX, Chen Y, Li Y, Wang X, Dai RS, et al. The deubiquitinase USP36 promotes snoRNP group SUMOylation and is essential for ribosome biogenesis. EMBO Rep. 2021;22:e50684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu C, Zhao H, Xiao S, Han T, Chen Y, Wang T, et al. Slx5p-Slx8p promotes accurate chromosome segregation by mediating the degradation of synaptonemal complex components during meiosis. Adv Sci. 2020;7:1900739.

    Article  CAS  Google Scholar 

  46. Zhang T, Yang H, Zhou Z, Bai Y, Wang J, Wang W. Crosstalk between SUMOylation and ubiquitylation controls DNA end resection by maintaining MRE11 homeostasis on chromatin. Nat Commun. 2022;13:5133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun XX, He X, Yin L, Komada M, Sears RC, Dai MS. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc. Proc Natl Acad Sci USA. 2015;112:3734–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Fu L, Qi X, Zhang Z, Xia Y, Jia J, et al. Structural insight into the mutual recognition and regulation between Suppressor of Fused and Gli/Ci. Nat Commun. 2013;4:2608.

    Article  PubMed  Google Scholar 

  49. Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 2022;23:715–31.

    Article  CAS  PubMed  Google Scholar 

  50. Fiorentino F, Castiello C, Mai A, Rotili D. Therapeutic potential and activity modulation of the protein lysine deacylase Sirtuin 5. J Med Chem. 2022;65:9580–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosenberg LE, Lilljeqvist A, Hsia YE. Methylmalonic aciduria: metabolic block localization and vitamin B 12 dependency. Science. 1968;162:805–7.

    Article  CAS  PubMed  Google Scholar 

  52. Baumgartner MR, Hörster F, Dionisi-Vici C, Haliloglu G, Karall D, Chapman KA, et al. Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia. Orphanet J Rare Dis. 2014;9:130.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Solon-Biet SM, Cogger VC, Pulpitel T, Wahl D, Clark X, Bagley E, et al. Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab. 2019;1:532–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14:11–31.

    Article  CAS  PubMed  Google Scholar 

  55. Shim EH, Livi CB, Rakheja D, Tan J, Benson D, Parekh V, et al. L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 2014;4:1290–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sinclair WR, Shrimp JH, Zengeya TT, Kulkarni RA, Garlick JM, Luecke H, et al. Bioorthogonal pro-metabolites for profiling short chain fatty acylation. Chem Sci. 2018;9:1236–41.

    Article  CAS  PubMed  Google Scholar 

  57. Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther. 2022;7:396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang Q, Wu D, Zhao J, Yan Z, Chen L, Guo S, et al. TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis. Embo J. 2022;41:e110324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS, et al. Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab. 2018;28:866–80.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Investig. 2014;124:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17:887–904.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J, Muri J, Fitzgerald G, Gorski T, Gianni-Barrera R, Masschelein E, et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab. 2020;31:1136–53.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang G, Gao Z, Guo X, Ma R, Wang X, Zhou P, et al. CAP2 promotes gastric cancer metastasis by mediating the interaction between tumor cells and tumor-associated macrophages. J Clin Investig. 2023;133:e166224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hinshaw DC, Hanna A, Lama-Sherpa T, Metge B, Kammerud SC, Benavides GA, et al. Hedgehog signaling regulates metabolism and polarization of mammary tumor-associated macrophages. Cancer Res. 2021;81:5425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  CAS  PubMed  Google Scholar 

  66. Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell. 2021;39:649–61.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82202911, 82300786), Shenzhen Medical Research Fund (B2302054) and Postdoctoral Fellowship Program and China Postdoctoral Science Foundation (BX20250229).

Author information

Authors and Affiliations

Authors

Contributions

ZXP, XZY, and MDJ designed and directed data processing procedures. MDJ, SJ, TDY, ZCY, LQY, LFY, YJK, and YHM analyzed the data. MDJ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Daojia Miao, Zhiyong Xiong or Xiaoping Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of Huazhong University of Science and Technology. The license number of the ethical review for the study is S3693. All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, D., Shi, J., Tan, D. et al. Targeting MMA-induced USP36 methylmalonylation to suppress macrophage polarization and tumor progression in clear-cell renal cell carcinoma. Cell Death Differ (2025). https://doi.org/10.1038/s41418-025-01646-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-025-01646-w

Search

Quick links