Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ARHGAP36 imposes a bifurcate activation of adherens junction and actomyosin to promote entosis

Abstract

Entosis is a non-apoptotic cell death process implicated in various important biological processes, such as tumorigenesis. Entotic death is preceded with the formation of cell-in-cell structures that are well known to be controlled by two spatially separated core elements: adherens junction and actomyosin. However, the molecular mechanism underlying their coordination remains a longstanding open question. In this study, by profiling isogenic breast cancer cells, ARHGAP36 was identified as a potent inducer of entotic cell-in-cell formation, consistent with multiple lines of tumor-suppressive evidence both in vitro and in vivo. This effect is attributed to the concomitant promotion of P-cadherin-mediated cell-cell adhesion and RhoA-regulated actomyosin contraction. Mechanistically, ARHGAP36, through the arginine-rich domain at the N-terminal, binds to β-catenin to stabilize P-cadherin expression in a way accompanying with, and mutually exclusive from, its interaction with PKAc to activate RhoA signaling. Thus, this study unveiled a heretofore unrecognized coordination mechanism for entosis, where ARHGAP36 engages both adherens junction and actomyosin to drive cell-in-cell formation, providing a promising cancer therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ARHGAP36 is associated with entotic cell-in-cell formation.
Fig. 2: ARHGAP36 promotes entotic cell-in-cell formation.
Fig. 3: Tumor suppressive effects of ARHGAP36.
Fig. 4: ARHGAP36 promotes the expression of adhesion molecules and mediates cell adhesion.
Fig. 5: ARHGAP36 stabilizes the P-cadherin complex by interacting with β-catenin.
Fig. 6: The Arg-rich domain stables P-cadherin complex.
Fig. 7: ARHGAP36 mislocation blocks CIC formation.
Fig. 8: ARHGAP36 promotes actomyosin contraction.
Fig. 9: PKA involvement in ARHGAP36-regulated CIC formation.
Fig. 10: ARHGAP36 parallelly regulates actomyosin and adherens junction.

Similar content being viewed by others

Data availability

All data supporting this study are included in the article or supplementary materials.

References

  1. Fais S, Overholtzer M. Cell-in-cell phenomena in cancer. Nat Rev Cancer. 2018;18:758–66.

    Article  CAS  PubMed  Google Scholar 

  2. Cai B, Yu L, Sharum SR, Zhang K, Diao J. Single-vesicle measurement of protein-induced membrane tethering. Colloids Surf B Biointerfaces. 2019;177:267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruan B, Niu Z, Jiang X, Li Z, Tai Y, Huang H, et al. High frequency of cell-in-cell formation in heterogeneous human breast cancer tissue in a patient with poor prognosis: a case report and literature review. Front Oncol. 2019;9:1444.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sterling NA, Park JY, Park R, Cho SH, Kim S. An entosis-like process induces mitotic disruption in Pals1 microcephaly pathogenesis. Nat Commun. 2023;14:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song J, Xu R, Zhang H, Xue X, Ruze R, Chen Y, et al. Cell-in-cell-mediated entosis reveals a progressive mechanism in pancreatic cancer. Gastroenterology. 2023;165:1505–21.e20.

    Article  CAS  PubMed  Google Scholar 

  6. Patterson JC, Varkaris A, Croucher PJP, Ridinger M, Dalrymple S, Nouri M, et al. Plk1 inhibitors and abiraterone synergistically disrupt mitosis and kill cancer cells of disparate origin independently of androgen receptor signaling. Cancer Res. 2023;83:219–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mihlan M, Wissmann S, Gavrilov A, Kaltenbach L, Britz M, Franke K, et al. Neutrophil trapping and nexocytosis, mast cell-mediated processes for inflammatory signal relay. Cell. 2024;187:5316–35.e28.

    Article  CAS  PubMed  Google Scholar 

  8. Su Y, Huang H, Luo T, Zheng Y, Fan J, Ren H, et al. Cell-in-cell structure mediates in-cell killing suppressed by CD44. Cell Discov. 2022;8:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Overholtzer M. Michael Overholtzer: answering existential questions on entosis. J Cell Biol. 2011;195:924–5.

    Article  PubMed  Google Scholar 

  10. Durgan J, Florey O. Cancer cell cannibalism: multiple triggers emerge for entosis. Biochim Biophys Acta Mol Cell Res. 2018;1865:831–41.

    Article  CAS  PubMed  Google Scholar 

  11. Wang S, He MF, Chen YH, Wang MY, Yu XM, Bai J, et al. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells. Cell Death Dis. 2013;4:e856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ni C, Chen Y, Zeng M, Pei R, Du Y, Tang L, et al. In-cell infection: a novel pathway for Epstein-Barr virus infection mediated by cell-in-cell structures. Cell Res. 2015;25:785–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T, et al. Competition between human cells by entosis. Cell Res. 2014;24:1299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liang J, Niu Z, Zhang B, Yu X, Zheng Y, Wang C, et al. p53-dependent elimination of aneuploid mitotic offspring by entosis. Cell Death Differ. 2021;28:799–813.

    Article  CAS  PubMed  Google Scholar 

  15. Krajcovic M, Johnson NB, Sun Q, Normand G, Hoover N, Yao E, et al. A non-genetic route to aneuploidy in human cancers. Nat Cell Biol. 2011;13:324–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun Q, Cibas ES, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014;24:1288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang M, Niu Z, Qin H, Ruan B, Zheng Y, Ning X, et al. Mechanical ring interfaces between adherens junction and contractile actomyosin to coordinate entotic cell-in-cell formation. Cell Rep. 2020;32:108071.

    Article  CAS  PubMed  Google Scholar 

  18. Ruan B, Wang C, Chen A, Liang J, Niu Z, Zheng Y, et al. Expression profiling identified IL-8 as a regulator of homotypic cell-in-cell formation. BMB Rep. 2018;51:412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Purvanov V, Holst M, Khan J, Baarlink C, Grosse R. G-protein-coupled receptor signaling and polarized actin dynamics drive cell-in-cell invasion. Elife. 2014;3:e02786.

  20. Liang J, Fan J, Wang M, Niu Z, Zhang Z, Yuan L, et al. CDKN2A inhibits formation of homotypic cell-in-cell structures. Oncogenesis. 2018;7:50.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ruan B, Zhang B, Chen A, Yuan L, Liang J, Wang M, et al. Cholesterol inhibits entotic cell-in-cell formation and actomyosin contraction. Biochem Biophys Res Commun. 2018;495:1440–6.

    Article  CAS  PubMed  Google Scholar 

  22. Yan T, Qiu W, Song J, Fan Y, Yang Z. ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells. J Mol Endocrinol. 2021;66:1–10.

    Article  CAS  PubMed  Google Scholar 

  23. An W, Zhang Y, Lai H, Zhang Y, Zhang H, Zhao G, et al. Alpinia katsumadai Hayata induces growth inhibition and autophagy‑related apoptosis by regulating the AMPK and Akt/mTOR/p70S6K signaling pathways in cancer cells. Oncol Rep. 2022;48:142.

  24. Eccles RL, Czajkowski MT, Barth C, Muller PM, Mcshane E, Grunwald S, et al. Bimodal antagonism of PKA signalling by ARHGAP36[J]. Nat Commun. 2016;7:12963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niu Z, He M, Sun Q. Molecular mechanisms underlying cell-in-cell formation: core machineries and beyond. J Mol Cell Biol. 2021;13:329–34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Aburima A, Wraith KS, Raslan Z, Law R, Magwenzi S, Naseem KM. cAMP signaling regulates platelet myosin light chain (MLC) phosphorylation and shape change through targeting the RhoA-Rho kinase-MLC phosphatase signaling pathway. Blood. 2013;122:3533–45.

    Article  CAS  PubMed  Google Scholar 

  27. Rack PG, Ni J, Payumo AY, Nguyen V, Crapster JA, Hovestadt V, et al. Arhgap36-dependent activation of Gli transcription factors. Proc Natl Acad Sci USA. 2014;111:11061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Zhang C, Zhang H, Zeng W, Li S, Chen C, et al. ZIPK mediates endothelial cell contraction through myosin light chain phosphorylation and is required for ischemic-reperfusion injury. FASEB J. 2019;33:9062–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deng, J, Van T, Lierop, J E, Sutherland C. Walsh M P. Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase[J]. J Biol Chem. 2001;276:16365–73.

    Article  CAS  PubMed  Google Scholar 

  30. Huang J, Mahavadi S, Sriwai W, Hu W, Murthy KS. Gi-coupled receptors mediate phosphorylation of CPI-17 and MLC20 via preferential activation of the PI3K/ILK pathway. Biochem J. 2006;396:193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimokawa H, Seto M, Katsumata N, Amano M, Kozai T, Yamawaki T, et al. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res. 1999;43:1029–39.

    Article  CAS  PubMed  Google Scholar 

  32. Ying Z, Do Carmo JM, Xiang L, Da Silva AA, Chen M, Ryan MJ, et al. Inhibitor kappaB kinase 2 is a myosin light chain kinase in vascular smooth muscle. Circ Res. 2013;113:562–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamashiro S, Totsukawa G, Yamakita Y, Sasaki Y, Madaule P, Ishizaki T, et al. Citron kinase, a Rho-dependent kinase, induces di-phosphorylation of regulatory light chain of myosin II. Mol Biol Cell. 2003;14:1745–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beckmann PJ, Larson JD, Larsson AT, Ostergaard JP, Wagner S, Rahrmann EP, et al. Sleeping beauty insertional mutagenesis reveals important genetic drivers of central nervous system embryonal tumors. Cancer Res. 2019;79:905–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Croise P, Houy S, Gand M, Lanoix J, Calco V, Toth P, et al. Cdc42 and Rac1 activity is reduced in human pheochromocytoma and correlates with FARP1 and ARHGEF1 expression. Endocr Relat Cancer. 2016;23:281–93.

    Article  CAS  PubMed  Google Scholar 

  36. Nam H, Jeon S, An H, Yoo J, Lee HJ, Lee SK, et al. Critical roles of ARHGAP36 as a signal transduction mediator of Shh pathway in lateral motor columnar specification. Elife. 2019;8:e46683.

  37. Patel RA, Forinash KD, Pireddu R, Sun Y, Sun N, Martin MP, et al. RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer Res. 2012;72:5025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou X, Liu Y, You J, Zhang H, Zhang X, Ye L. Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through cross-talk with activated ERK1/2. Cancer Lett. 2008;270:312–27.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Li C, Gao H, Nabeka H, Shimokawa T, Wakisaka H, et al. Rho kinase inhibitors stimulate the migration of human cultured osteoblastic cells by regulating actomyosin activity. Cell Mol Biol Lett. 2011;16:279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng S, Castillo V, Welty M, Eliaz I, Sliva D. Honokiol inhibits migration of renal cell carcinoma through activation of RhoA/ROCK/MLC signaling pathway. Int J Oncol. 2016;49:1525–30.

    Article  CAS  PubMed  Google Scholar 

  41. Byrne FL, Yang L, Phillips PA, Hansford LM, Fletcher JI, Ormandy CJ, et al. RNAi-mediated stathmin suppression reduces lung metastasis in an orthotopic neuroblastoma mouse model. Oncogene. 2014;33:882–90.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou F, Yu T, Xiao F, Wang B, Tian W, Xu R, et al. Periostin promotes EMT via inhibition of RIN1-mediated endocytosis of EGFR in gliomas. Holist Integr Oncol. 2022;1:19.

    Article  Google Scholar 

  43. Han L, Lv Q, Guo X, Guo K, Du R, Li F, et al. Prediction and verification of the key ingredients and molecular targets of Guizhi Fuling capsule against tumour metastasis and resistance. Holist Integr Oncol. 2022;1:12.

    Article  Google Scholar 

  44. Zhang B, Zhuang T, Lin Q, Yang B, Xu X, Xin G, et al. Patched1-ArhGAP36-PKA-Inversin axis determines the ciliary translocation of Smoothened for Sonic Hedgehog pathway activation. Proc Natl Acad Sci USA. 2019;116:874–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wang M, Ning X, Chen A, Huang H, Ni C, Zhou C, et al. Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression. Sci Rep. 2015;5:12223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang F, Zhang B, Wang Y, Jiang R, Liu J, Wei Y, et al. An extra-erythrocyte role of haemoglobin body in chondrocyte hypoxia adaption. Nature. 2023;622:834–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Su Y, Ren H, Tang M, Zheng Y, Zhang B, Wang C, et al. Role and dynamics of vacuolar pH during cell-in-cell mediated death. Cell Death Dis. 2021;12:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (Nos. 2023YFA0914900 and 2022YFA0912400), the National Natural Science Foundation of China (NSFC) Grants (Nos. 32100608, 82273184, 82373069 and 82002918), China Postdoctoral Science Foundation (No. 88014Y0119), the CAMS Innovation Fund for Medical Sciences (2021-I2M-5-008), Hainan Provincial Association for Science and Technology Young Talent Innovation Program (QCXM202017), and Hainan Provincial Natural Science Foundation High-level Talent Project (820RC639).

Author information

Authors and Affiliations

Authors

Contributions

QS, HH, and XW conceived and supervised the project. BR and CW performed most experiments with the help from ZZ, XG, ZN, JL, BZ, LL, YZ, XZ, ZS, and MH in agents, data acquisition, analysis and interpretation, and statistical analysis. XG and LL primarily accomplished revision. QS, HH, XW, and GM prepared the figures, wrote the manuscript with inputs from other authors. All authors read and approved the final paper.

Corresponding authors

Correspondence to Xiaoning Wang, Hongyan Huang or Qiang Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Compliance with ethics requirements

All experiments involving animals were conducted in strict accordance with the guidelines set by the Chinese Regulations of Laboratory Animals and Laboratory Animal-Requirements of Environment and Housing Facilities, approved by the Experimental Animal Committee of Laboratory Animal Center, AMMS (Approval number: ICAUC-DWZX-2021-036).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, B., Wang, C., Gao, X. et al. ARHGAP36 imposes a bifurcate activation of adherens junction and actomyosin to promote entosis. Cell Death Differ (2026). https://doi.org/10.1038/s41418-026-01668-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41418-026-01668-y

Search

Quick links