Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Cell Death & Disease
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. cell death & disease
  3. review articles
  4. article
Shedding light on the function of autophagy in complicated pregnancies
Download PDF
Download PDF
  • Review Article
  • Open access
  • Published: 08 January 2026

Shedding light on the function of autophagy in complicated pregnancies

  • Shuting Wan  ORCID: orcid.org/0009-0002-6160-97441,2,
  • Yuxing Huang  ORCID: orcid.org/0000-0002-1260-27251,2 &
  • Huixia Yang1,2 

Cell Death & Disease , Article number:  (2026) Cite this article

  • 924 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell death and immune response
  • Gestational diabetes
  • Macroautophagy
  • Nutrient signalling
  • Predictive markers

Abstract

Autophagy is a conserved degradation process in eukaryotic cells that is regulated by autophagy-related genes. During autophagy, lysosomes break down cytoplasmic proteins and damaged organelles. This process plays a pivotal role in cell growth and development, protection against metabolic stress and oxidative damage, and the maintenance of cellular homeostasis through the recycling of cellular components. Pregnancy encompasses crucial events such as decidualization, embryo implantation, and fetal growth. Abnormal autophagy has been implicated in several pregnancy complications and can significantly impact both maternal and fetal health. Understanding the relationship between autophagy and complicated pregnancies could open new avenues for potential therapeutic interventions to improve maternal and fetal outcomes. In this review, we summarize the intricate relationship between autophagy and pregnancy complications, elucidate the role of autophagy in gestation, and discuss the clinical significance of autophagy in mitigating or preventing pregnancy-related disorders.

Similar content being viewed by others

Exploiting sweet relief for preeclampsia by targeting autophagy-lysosomal machinery and proteinopathy

Article Open access 17 May 2024

Transcriptional regulation of autophagy and its implications in human disease

Article 12 April 2023

The emerging mechanisms and functions of microautophagy

Article 12 September 2022

References

  1. Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967;33:437–49.

    Google Scholar 

  2. Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020;36:101679.

    Google Scholar 

  3. Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, et al. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy. 2022;18:50–72.

    Google Scholar 

  4. Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, et al. Targeting autophagy in disease: established and new strategies. Autophagy. 2022;18:473–95.

    Google Scholar 

  5. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017;93:1015–34.

    Google Scholar 

  6. Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol. 2021;17:647–61.

    Google Scholar 

  7. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13:722–37.

    Google Scholar 

  8. Mizushima N, Longo DL, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383:1564–76.

    Google Scholar 

  9. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24:24–41.

    Google Scholar 

  10. Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020;21:439–58.

    Google Scholar 

  11. Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, et al. The different autophagy degradation pathways and neurodegeneration. Neuron. 2022;110:935–66.

    Google Scholar 

  12. Wang L, Klionsky DJ, Shen H-M. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol. 2022;24:186–203.

    Google Scholar 

  13. Zhang Y, Liu Z, Sun H. Fetal-maternal interactions during pregnancy: a ‘three-in-one’ perspective. Front Immunol. 2023;14:1198430.

    Google Scholar 

  14. Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019;366:l2381.

    Google Scholar 

  15. Johns EC, Denison FC, Norman JE, Reynolds RM. Gestational Diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrinol Metab. 2018;29:743–54.

    Google Scholar 

  16. Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2018;218:S745–S61.

    Google Scholar 

  17. Rai R, Regan L. Recurrent miscarriage. Lancet. 2006;368:601–11.

    Google Scholar 

  18. Dimitriadis E, Rolnik DL, Zhou W, Estrada-Gutierrez G, Koga K, Francisco RPV, et al. Pre-eclampsia. Nat Rev Dis Prim. 2023;9:8.

    Google Scholar 

  19. Vikse BE, Irgens LM, Leivestad T, Skjaerven R, Iversen BM. Preeclampsia and the risk of end-stage renal disease. N Engl J Med. 2008;359:800–9.

    Google Scholar 

  20. Petca A, Miron BC, Pacu I, Dumitrașcu MC, Mehedințu C, Șandru F, et al. HELLP Syndrome-holistic insight into pathophysiology. Medicina. 2022;58.

  21. Tlaye KG, Endalfer ML, Kassaw MW, Gebremedhin MM, Aynalem YA. Preeclampsia management modalities and perinatal death: a retrospective study in Woldia general hospital. BMC Pregnancy Childbirth. 2020;20:205.

    Google Scholar 

  22. Jiang L, Tang K, Magee LA, von Dadelszen P, Ekeroma A, Li X, et al. A global view of hypertensive disorders and diabetes mellitus during pregnancy. Nat Rev Endocrinol. 2022;18:760–75.

    Google Scholar 

  23. Monod C, Kotzaeridi G, Linder T, Yerlikaya-Schatten G, Wegener S, Mosimann B, et al. Maternal overweight and obesity and its association with metabolic changes and fetal overgrowth in the absence of gestational diabetes mellitus: A prospective cohort study. Acta Obstet Gynecol Scand. 2024;103:257–65.

    Google Scholar 

  24. Andrews C, Maya J, Schulte CCM, Hsu S, Thaweethai T, James KE, et al. Risk of neonatal hypoglycemia in infants of mothers with gestational glucose intolerance. Diab Care. 2024;47:1194–201.

    Google Scholar 

  25. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations with neonatal anthropometrics. Diabetes. 2009;58:453–9.

  26. Lees CC, Romero R, Stampalija T, Dall’Asta A, DeVore GA, Prefumo F, et al. Clinical Opinion: The diagnosis and management of suspected fetal growth restriction: an evidence-based approach. Am J Obstet Gynecol. 2022;226:366–78.

    Google Scholar 

  27. Melo P, Dhillon-Smith R, Islam MA, Devall A, Coomarasamy A. Genetic causes of sporadic and recurrent miscarriage. Fertil Steril. 2023;120:940–4.

    Google Scholar 

  28. Yusuf ANM, Amri MF, Ugusman A, Hamid AA, Wahab NA, Mokhtar MH. Hyperandrogenism and its possible effects on endometrial receptivity: a review. Int J Mol Sci. 2023;24:12026.

  29. Rimmer MP, Teh JJ, Mackenzie SC, Al Wattar BH. The risk of miscarriage following COVID-19 vaccination: a systematic review and meta-analysis. Hum Reprod. 2023;38:840–52.

    Google Scholar 

  30. Carbonnel M, Pirtea P, de Ziegler D, Ayoubi JM. Uterine factors in recurrent pregnancy losses. Fertil Steril. 2021;115:538–45.

    Google Scholar 

  31. Zhang Y, Feng M, Gao Y, Zhang M, Zhang Z. Depression outcome in women with recurrent spontaneous abortion: A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2024;300:54–62.

    Google Scholar 

  32. Costa MA. Scrutinising the regulators of syncytialization and their expression in pregnancy-related conditions. Mol Cell Endocrinol. 2016;420:180–93.

    Google Scholar 

  33. Nakashima A, Yamanaka-Tatematsu M, Fujita N, Koizumi K, Shima T, Yoshida T, et al. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy. 2013;9:303–16.

    Google Scholar 

  34. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12:1065–74.

    Google Scholar 

  35. Fu B, Li X, Sun R, Tong X, Ling B, Tian Z, et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proc Natl Acad Sci USA. 2013;110:E231–E40.

    Google Scholar 

  36. Qin X-Y, Shen H-H, Zhou W-J, Mei J, Lu H, Tan X-F, et al. Insight of autophagy in spontaneous miscarriage. Int J Biol Sci. 2022;18:1150–70.

    Google Scholar 

  37. Voros C, Stavros S, Sapantzoglou I, Mavrogianni D, Daskalaki MA, Theodora M, et al. The role of placental mitochondrial dysfunction in adverse perinatal outcomes: a systematic review. J Clin Med. 2025;14:1422.

  38. Marín R, Chiarello DI, Abad C, Rojas D, Toledo F, Sobrevia L. Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165961.

    Google Scholar 

  39. Zhao H, Wong RJ, Stevenson DK. The impact of hypoxia in early pregnancy on placental cells. Int J Mol Sci. 2021;22.

  40. Dossou AS, Basu A. The emerging roles of mTORC1 in macromanaging autophagy. Cancers. 2019;11.

  41. Rossant J, Tam PPL. Early human embryonic development: Blastocyst formation to gastrulation. Dev Cell. 2022;57:152–65.

    Google Scholar 

  42. Muter J, Lynch VJ, McCoy RC, Brosens JJ. Human embryo implantation. Development. 2023;150.

  43. Diedrich K, Fauser BCJM, Devroey P, Griesinger G. The role of the endometrium and embryo in human implantation. Hum Reprod Update. 2007;13:365–77.

    Google Scholar 

  44. Moustafa S, Young SL. Diagnostic and therapeutic options in recurrent implantation failure. F1000Res. 2020;9.

  45. Bao H, Wang H. Basic research advances in China on embryo implantation, placentation, and parturition. Matern Fetal Med. 2024;6:37–49.

    Google Scholar 

  46. Yang D, Liu A, Zhang Y, Nan S, Yin R, Lei Q, et al. Essential role of CRIM1 on endometrial receptivity in goat. Int J Mol Sci. 2021;22:5323.

  47. Oestreich AK, Chadchan SB, Popli P, Medvedeva A, Rowen MN, Stephens CS, et al. The Autophagy Gene Atg16L1 is Necessary for Endometrial Decidualization. Endocrinology. 2020;161:bqz039.

  48. Lai Z-Z, Wang Y, Zhou W-J, Liang Z, Shi J-W, Yang H-L, et al. Single-cell transcriptome profiling of the human endometrium of patients with recurrent implantation failure. Theranostics. 2022;12:6527–47.

    Google Scholar 

  49. Popli P, Tang S, Chadchan SB, Talwar C, Rucker EB, Guan X, et al. Beclin-1-dependent autophagy, but not apoptosis, is critical for stem-cell-mediated endometrial programming and the establishment of pregnancy. Dev Cell. 2023;58:885−897.e4.

  50. Huang J, Liu F, Qi T, Gao R, Xie H, Ruan L, et al. Benzo(a)pyrene promotes autophagy to impair endometrial decidualization via inhibiting CXCL12/CXCR4 axis. Chem Biol Interact. 2025;405:111288.

    Google Scholar 

  51. Zhu Y, Zhang Z, Ma Z, Deng W, Zhang Y, Wu Q. Autophagy markers are dysregulated in the endometrial tissues of patients with unexplained repeated implantation failure. Mol Reprod Dev. 2022;89:655–60.

    Google Scholar 

  52. Yang Z, Li Q, Yuan F, Wang M, Zhang R, Chen Y, et al. Decreased NOTCH1 signaling activated autophagy in the mid-secretory endometrium of patients with recurrent implantation failure†. Biol Reprod. 2023;108:974–87.

    Google Scholar 

  53. Wang W-j, Zhang H, Chen Z-q, Zhang W, Liu X-m, Fang J-y, et al. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reprod Biol Endocrinol. 2019;17:2.

  54. Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ Res. 2019;124:1094–112.

    Google Scholar 

  55. Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15:275−89.

  56. Chappell LC, Cluver CA, Kingdom J, Tong S. Pre-eclampsia. Lancet. 2021;398:341–54.

    Google Scholar 

  57. Redman CWG, Staff AC, Roberts JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022;226:S907–S27.

    Google Scholar 

  58. Nakashima A, Aoki A, Kusabiraki T, Cheng S-B, Sharma S, Saito S. Autophagy regulation in preeclampsia: Pros and cons. J Reprod Immunol. 2017;123:17–23.

    Google Scholar 

  59. Zhou M, Guo J, Li S, Li A, Fang Z, Zhao M, et al. Effect of peroxiredoxin 1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. J Assist Reprod Genet. 2023;40:1573–87.

    Google Scholar 

  60. Cheng S, Huang Z, Banerjee S, Jash S, Buxbaum JN, Sharma S. Evidence From Human Placenta, Endoplasmic Reticulum-Stressed Trophoblasts, and Transgenic Mice Links Transthyretin Proteinopathy to Preeclampsia. Hypertension. 2022;79:1738–54.

    Google Scholar 

  61. Jin J, Gao L, Zou X, Zhang Y, Zheng Z, Zhang X, et al. Gut dysbiosis promotes preeclampsia by regulating macrophages and trophoblasts. Circ Res. 2022;131:492–506.

    Google Scholar 

  62. Nakashima A, Shima T, Aoki A, Kawaguchi M, Yasuda I, Tsuda S, et al. Placental autophagy failure: A risk factor for preeclampsia. J Obstet Gynaecol Res. 2020;46:2497–504.

    Google Scholar 

  63. Li L, Peng W, Zhou Q, Wan J-P, Wang X-T, Qi H-B. LRP6 regulates Rab7-mediated autophagy through the Wnt/β-catenin pathway to modulate trophoblast cell migration and invasion. J Cell Biochem. 2020;121:1599–609.

    Google Scholar 

  64. Zhou X, Zhao X, Zhou W, Qi H, Zhang H, Han T-L, et al. Impaired placental mitophagy and oxidative stress are associated with dysregulated BNIP3 in preeclampsia. Sci Rep. 2021;11:20469.

    Google Scholar 

  65. Nakashima A, Shima T, Tsuda S, Aoki A, Kawaguchi M, Yoneda S, et al. Disruption of Placental Homeostasis Leads to Preeclampsia. Int J Mol Sci. 2020;2:13298.

  66. Qiu L, Liu H, Chen S, Wu Y, Yan J. Ferroptosis contributed to endoplasmic reticulum stress in preterm birth by targeting LHX1 and IRE-1. Cell Signal. 2025;132:111777.

    Google Scholar 

  67. Chen H, Chen Y, Zheng Q. The regulated cell death at the maternal-fetal interface: beneficial or detrimental?. Cell Death Discov. 2024;10:100.

    Google Scholar 

  68. Liu M, Wu K, Wu Y. The emerging role of ferroptosis in female reproductive disorders. Biomed Pharmacother. 2023;166:115415.

    Google Scholar 

  69. Du J, Ji Q, Dong L, Meng Y, Xin G. HDAC4 Knockdown Induces Preeclampsia Cell Autophagy and Apoptosis by miR-29b. Reprod Sci. 2021;28:334–42.

    Google Scholar 

  70. Li Y, Guo Y, Wu D, Ai L, Wu R, Ping Z, et al. Phenylbutyric acid inhibits hypoxia-induced trophoblast apoptosis and autophagy in preeclampsia via the PERK/ATF-4/CHOP pathway. Mol Reprod Dev. 2024;91:e23742.

    Google Scholar 

  71. Vangrieken P, Al-Nasiry S, Bast A, Leermakers PA, Tulen CBM, Janssen GMJ, et al. Hypoxia-induced mitochondrial abnormalities in cells of the placenta. PLoS One. 2021;16:e0245155.

    Google Scholar 

  72. Jiang N, Zhou M, Le Y, Xiao L, Zhang C, Li S, et al. The Effect of FPR2 on the Regulation of Trophoblast Autophagy via the PI3K/AKT/mTOR Signaling Pathway in Preeclampsia. FASEB J. 2025;39:e70697.

    Google Scholar 

  73. Sun J, Yu M, Du W, Zhu S, Chen Z, Tao J, et al. The cGAS-STING pathway promotes the development of preeclampsia by upregulating autophagy: Mechanisms and implications. Int Immunopharmacol. 2024;128:111531.

    Google Scholar 

  74. Alves P, Amaral C, Teixeira N, Correia-da-Silva G. Cannabidiol disrupts apoptosis, autophagy and invasion processes of placental trophoblasts. Arch Toxicol. 2021;95:3393–406.

    Google Scholar 

  75. Wu H, Liu K, Zhang J. Excess fibronectin 1 participates in pathogenesis of pre-eclampsia by promoting apoptosis and autophagy in vascular endothelial cells. Mol Hum Reprod. 2021;27:gaab030.

  76. Gu S, Zhou C, Pei J, Wu Y, Wan S, Zhao X, et al. Esomeprazole inhibits hypoxia/endothelial dysfunction-induced autophagy in preeclampsia. Cell Tissue Res. 2022;388:181–94.

    Google Scholar 

  77. Gao Y, Zhang X, Meng T. Overexpression of let-7b exerts beneficial effects on the functions of human placental trophoblasts by activating the ERK1/2 signaling pathway. Mol Reprod Dev. 2022;89:39–53.

    Google Scholar 

  78. Ye W, Luo C, Huang J, Li C, Liu Z, Liu F. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. BMJ. 2022;377:e067946.

    Google Scholar 

  79. Wang Y, Ji L, Peng Z, Lai R, Zhang X, Xu Y, et al. Silencing DAPK3 blocks the autophagosome-lysosome fusion by mediating SNAP29 in trophoblast cells under high glucose treatment. Mol Cell Endocrinol. 2020;502:110674.

    Google Scholar 

  80. Hung T-H, Huang S-Y, Chen S-F, Wu C-P, Hsieh. Ts-Ta. Decreased placental apoptosis and autophagy in pregnancies complicated by gestational diabetes with large-for-gestational age fetuses. Placenta. 2020;90:27–36.

    Google Scholar 

  81. Liu Q, Han Y, Zhang M, Yang P, Xiang Y, Chen M, et al. IGF1R stimulates autophagy, enhances viability, and promotes insulin secretion in pancreatic β cells in gestational diabetes mellitus by upregulating ATG7. Reprod Biol. 2024;24:100850.

    Google Scholar 

  82. Zheng J, Ma X, Zhou Y, Ge S, Sun A, Luo S, et al. GATA2/FGF21 axis regulates the effects of high glucose on the apoptosis, autophagy and oxidative stress of human umbilical vein endothelial cell via PI3K/AKT/mTOR Pathway. Ann Clin Lab Sci. 2022;52:278–91.

    Google Scholar 

  83. Bao Y, Zhang J, Liu Y, Wu L, Yang J. Identification of human placenta-derived circular RNAs and autophagy related circRNA-miRNA-mRNA regulatory network in gestational diabetes mellitus. Front Genet. 2022;13:1050906.

    Google Scholar 

  84. Ji Y, Zhang W, Yang J, Li C. MiR-193b inhibits autophagy and apoptosis by targeting IGFBP5 in high glucose-induced trophoblasts. Placenta. 2020;101:185–93.

    Google Scholar 

  85. Han D, Jiang L, Gu X, Huang S, Pang J, Wu Y, et al. SIRT3 deficiency is resistant to autophagy-dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels. J Cell Physiol. 2020;235:8839–51.

    Google Scholar 

  86. Ji L, Chen Z, Xu Y, Xiong G, Liu R, Wu C, et al. Systematic characterization of autophagy in gestational diabetes mellitus. Endocrinology. 2017;158:2522–32.

    Google Scholar 

  87. Fetal Growth Restriction. ACOG Practice Bulletin, Number 227. Obstet Gynecol. 2021;137:e16–e28.

    Google Scholar 

  88. Kiserud T, Piaggio G, Carroli G, Widmer M, Carvalho J, Neerup Jensen L, et al. The World Health Organization Fetal Growth Charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med. 2017;14:e1002220.

    Google Scholar 

  89. Melamed N, Baschat A, Yinon Y, Athanasiadis A, Mecacci F, Figueras F, et al. FIGO (International Federation of Gynecology and Obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int J Gynaecol Obstet. 2021;152:3−57.

  90. Devarajan A, Rajasekaran NS, Valburg C, Ganapathy E, Bindra S, Freije WA. Maternal perinatal calorie restriction temporally regulates the hepatic autophagy and redox status in male rats. Free Radic Biol Med. 2019;130:592–600.

    Google Scholar 

  91. Chen W, Mehlkop O, Scharn A, Nolte H, Klemm P, Henschke S, et al. Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation. Cell Metab. 2023;35:786−806.e13.

  92. Li M-R, Chen E-X, Li Z-H, Song H-L, Zhang Y, Li F-F, et al. HMGB1 regulates autophagy of placental trophoblast through ERK signaling pathway. Biol Reprod. 2024;111:414–26.

    Google Scholar 

  93. Li R, Peng J, Zhang W, Wu Y, Hu R, Chen R, et al. Ambient fine particulate matter exposure disrupts placental autophagy and fetal development in gestational mice. Ecotoxicol Environ Saf. 2022;239:113680.

    Google Scholar 

  94. Zhang H, Zheng Y, Liu X, Zha X, Elsabagh M, Ma Y, et al. Autophagy attenuates placental apoptosis, oxidative stress and fetal growth restriction in pregnant ewes. Environ Int. 2023;173:107806.

    Google Scholar 

  95. Li J, Gao H, Xu Z, Gao B, Zhang L, Su B, et al. Gestational exposure to carbon black nanoparticles triggered fetal growth restriction in mice: The mediation of inactivating autophagy-lysosomal degradation system in placental ferroptosis. Sci Total Environ. 2025;959:178167.

    Google Scholar 

  96. Goudarzi ST, Vousooghi N, Verdi J, Mehdizadeh A, Aslanian-Kalkhoran L, Yousefi M. Autophagy genes and signaling pathways in endometrial decidualization and pregnancy complications. J Reprod Immunol. 2024;163:104223.

    Google Scholar 

  97. Sun Y, Sha M, Qin Y, Xiao J, Li W, Li S, et al. Bisphenol A induces placental ferroptosis and fetal growth restriction via the YAP/TAZ-ferritinophagy axis. Free Radic Biol Med. 2024;213:524–40.

    Google Scholar 

  98. Zhu H-L, Shi X-T, Xu X-F, Xiong Y-W, Yi S-J, Zhou G-X, et al. Environmental cadmium exposure induces fetal growth restriction via triggering PERK-regulated mitophagy in placental trophoblasts. Environ Int. 2021;147:106319.

    Google Scholar 

  99. Fan M, Wu H, Xie Y, Liu M, Yu X, Wang F, et al. Maternal Nutritional Status Governs Fetal Development by Modulating Imprinting Gene GAB1-Mediated Trophoblast Differentiation in the Placenta. Cell Prolif. 2025;58:e70069.

  100. Guo Y, Huang C, Xu C, Qiu L, Yang F. Dysfunction of ZNF554 promotes ROS-induced apoptosis and autophagy in Fetal Growth Restriction via the p62-Keap1-Nrf2 pathway. Placenta. 2023;143:34–44.

    Google Scholar 

  101. Zhang H, Zha X, Zheng Y, Liu X, Elsabagh M, Wang H, et al. Mechanisms underlying the role of endoplasmic reticulum stress in the placental injury and fetal growth restriction in an ovine gestation model. J Anim Sci Biotechnol. 2023;14:117.

    Google Scholar 

  102. Zheng Y, Zha X, Zhang B, Elsabagh M, Wang H, Wang M, et al. The interaction of ER stress and autophagy in trophoblasts: navigating pregnancy outcome†. Biol Reprod. 2024;111:292–311.

    Google Scholar 

  103. Li J, Dong X, Liu J-Y, Gao L, Zhang W-W, Huang Y-C, et al. FUNDC1-mediated mitophagy triggered by mitochondrial ROS is partially involved in 1-nitropyrene-evoked placental progesterone synthesis inhibition and intrauterine growth retardation in mice. Sci Total Environ. 2024;908:168383.

    Google Scholar 

  104. Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol. 2023;14:1107182.

    Google Scholar 

  105. Nakashima A, Cheng S-B, Ikawa M, Yoshimori T, Huber WJ, Menon R, et al. Evidence for lysosomal biogenesis proteome defect and impaired autophagy in preeclampsia. Autophagy. 2020;16:1771–85.

    Google Scholar 

  106. Huang J, Wan Z, Li J, Xiong X, Jiang R, Yang B, et al. Downregulation of NNMT affects trophoblast function via inhibiting COMP/CD36/ERK1/2 axis in recurrent spontaneous abortion. Cell Signal. 2025;132:111831.

    Google Scholar 

  107. Rezayat F, Esmaeil N, Nikpour P, Feizi A, Rezaei A. Different behavior of NK cells isolated from healthy women and women with recurrent spontaneous abortion after treatment with human amniotic epithelial cells. J Leukoc Biol. 2025;117:qiaf020.

  108. Tan H-X, Yang S-L, Li M-Q, Wang H-Y. Autophagy suppression of trophoblast cells induces pregnancy loss by activating decidual NK cytotoxicity and inhibiting trophoblast invasion. Cell Commun Signal. 2020;18:73.

    Google Scholar 

  109. Liu N, Shen H, Wang Z, Qin X, Li M, Zhang X. Autophagy inhibition in trophoblasts induces aberrant shift in CXCR4+ Decidual NK cell phenotype leading to pregnancy loss. J Clin Med. 2023;12.

  110. Hong L, Zhu YC, Liu S, Wu T, Li Y, Ye L, et al. Multi-omics reveals a relationship between endometrial amino acid metabolism and autophagy in women with recurrent miscarriage. Biol Reprod. 2021;105:393–402.

    Google Scholar 

  111. Girling J, Knight CL, Chappell L. Intrahepatic cholestasis of pregnancy: Green-top Guideline No. 43 2022. BJOG. 2022;129.

  112. Hobson S, Gandhi S, Sobel M. Intrahepatic cholestasis of pregnancy. CMAJ. 2022;194:E1650.

    Google Scholar 

  113. Kostka L, Hruban L, Morávková P. Intrahepatic cholestasis of pregnancy. CESKA Gynekol. 2024;89:405–10.

    Google Scholar 

  114. Ovadia C, Seed PT, Sklavounos A, Geenes V, Di Ilio C, Chambers J, et al. Association of adverse perinatal outcomes of intrahepatic cholestasis of pregnancy with biochemical markers: results of aggregate and individual patient data meta-analyses. Lancet. 2019;393:899–909.

    Google Scholar 

  115. Yang X, Zhou Y, Li H, Song F, Li J, Zhang Y, et al. Autophagic flux inhibition, apoptosis, and mitochondrial dysfunction in bile acids-induced impairment of human placental trophoblast. J Cell Physiol. 2022;237:3080–94.

    Google Scholar 

  116. Fang Y, Fang D. Comprehensive analysis of placental gene-expression profiles and identification of EGFR-mediated autophagy and ferroptosis suppression in intrahepatic cholestasis of pregnancy. Gene. 2022;834:146594.

    Google Scholar 

  117. Dong R, Hu Y, Chen Q, Shan D, Yuxia W. Elevated GABRP expression is correlated to the excessive autophagy in intrahepatic cholestasis of pregnancy. Heliyon. 2023;9:e13221.

    Google Scholar 

  118. Bastida-Ruiz D, Yart L, Wuillemin C, Ribaux P, Morris N, Epiney M, et al. The fine-tuning of endoplasmic reticulum stress response and autophagy activation during trophoblast syncytialization. Cell Death Dis. 2019;10:651.

  119. Chen Z, Geng Y, Gao R, Zhong H, Chen J, Mu X, et al. Maternal exposure to CeO2NPs derails placental development through trophoblast dysfunction mediated by excessive autophagy activation. J Nanobiotechnology. 2022;20:131.

  120. Wang A, Li Z, Zhang D, Chen C, Zhang H. Excessive ER-phagy mediated by FAM134B contributes to trophoblast cell mitochondrial dysfunction in preeclampsia. Acta Biochim Biophys Sin. 2024;56:1446–59.

    Google Scholar 

  121. Li J, Zhang S, Zhang Y, Dai Y, Zhang Y, Yang A, et al. Atg9A-mediated mitophagy is required for decidual differentiation of endometrial stromal cells. Reprod Biol. 2022;22:100707.

    Google Scholar 

  122. Kommagani R, Moley KH, Jungheim ES, Lydon JP, Medvedeva A, Chadchan SB, et al. The autophagy protein, FIP200 (RB1CC1) mediates progesterone responses governing uterine receptivity and decidualization†. Biol Reprod. 2020;102:843–51.

    Google Scholar 

  123. Chu Y, Zhu C, Yue C, Peng W, Chen W, He G, et al. Chorionic villus-derived mesenchymal stem cell-mediated autophagy promotes the proliferation and invasiveness of trophoblasts under hypoxia by activating the JAK2/STAT3 signalling pathway. Cell Biosci. 2021;11:182.

    Google Scholar 

  124. Lee B, Shin H, Oh J-E, Park J, Park M, Yang SC, et al. An autophagic deficit in the uterine vessel microenvironment provokes hyperpermeability through deregulated VEGFA, NOS1, and CTNNB1. Autophagy. 2021;17:1649–66.

    Google Scholar 

  125. Weel IC, Ribeiro VR, Romão-Veiga M, Fioratti EG, Peraçoli JC, Peraçoli MTS. Down-regulation of autophagy proteins is associated with higher mTOR expression in the placenta of pregnant women with preeclampsia. Braz J Med Biol Res. 2023;55:e12283.

    Google Scholar 

  126. Cheng S, Huang Z, Jash S, Wu K, Saito S, Nakashima A, et al. Hypoxia-Reoxygenation Impairs Autophagy-lysosomal Machinery In Primary Human Trophoblasts Mimicking Placental Pathology Of Early-onset Preeclampsia. Int J Mol Sci. 2022;23:10.

    Google Scholar 

  127. Chu Y, Chen W, Peng W, Liu Y, Xu L, Zuo J, et al. Amnion-derived mesenchymal stem cell exosomes-mediated autophagy promotes the survival of trophoblasts under hypoxia through mTOR pathway by the downregulation of EZH2. Front Cell Dev Biol. 2020;8:545852.

    Google Scholar 

  128. Lu L, Ma Y, Deng J, Xie J, Huang C. Lower ATG7 levels are associated with a higher risk of gestational diabetes mellitus: a cross-sectional study. Diab Metab Syndr Obes. 2022;15:2335–43.

    Google Scholar 

  129. Bao Y, Wu L, Liu Y, Fan C, Zhang J, Yang J. Role of CircCHD2 in the pathogenesis of gestational diabetes mellitus by regulating autophagy via miR-33b-3p/ULK1 axis. Placenta. 2024;145:27–37.

    Google Scholar 

  130. Zheng L, Tang R, Ahmad F, Fang J, Shi L, Chen X, et al. Circ_0081343 promotes autophagy and alleviates pyroptosis via PI3 K/AKT/HIF-1α axis in hypoxia-induced fetal growth restriction of mice. Anim Cells Syst. 2025;29:312–24.

    Google Scholar 

  131. Ling Q, Zhang Y-F, Chang W, Liu S-T, Zhu H-L, Wang H. NBR1-dependent autophagy activation protects against environmental cadmium-evoked placental trophoblast senescence. Chemosphere. 2024;358:142138.

    Google Scholar 

  132. Yang H-L, Lai Z-Z, Shi J-W, Zhou W-J, Mei J, Ye J-F, et al. A defective lysophosphatidic acid-autophagy axis increases miscarriage risk by restricting decidual macrophage residence. Autophagy. 2022;18:2459–80.

    Google Scholar 

  133. Tang L, Dai F, Zhang Y, Wang R, Tan W, Gu R, et al. Deletion of BMP4 impairs trophoblast function and decidual macrophage polarization via autophagy leading to recurrent spontaneous abortion. Int Immunopharmacol. 2025;147:114015.

    Google Scholar 

  134. Wang RQ, Dai F, Deng Z, Tang L, Liu H, Xia L, et al. ITGA3 participates in the pathogenesis of recurrent spontaneous abortion by downregulating ULK1-mediated autophagy to inhibiting trophoblast function. Am J Physiol Cell Physiol. 2024;328:C1941−C1956.

  135. Lu H, Yang H-L, Zhou W-J, Lai Z-Z, Qiu X-M, Fu Q, et al. Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence. Autophagy. 2021;17:2511–27.

    Google Scholar 

  136. Yang D, Ding J, Wang Y, Yuan M, Xian S, Zhang L, et al. YY1-PVT1 affects trophoblast invasion and adhesion by regulating mTOR pathway-mediated autophagy. J Cell Physiol. 2020;235:6637–46.

    Google Scholar 

  137. Wang P, Zhao C, Zhou H, Huang X, Ying H, Zhang S, et al. Dysregulation of Histone Deacetylases inhibits trophoblast growth during early placental development partially through TFEB-Dependent Autophagy-Lysosomal Pathway. Int J Mol Sci. 2023;24:15.

    Google Scholar 

  138. Pan Y, Yan L, Chen Q, Wei C, Dai Y, Tong X, et al. Dysfunction of Shh signaling activates autophagy to inhibit trophoblast motility in recurrent miscarriage. Exp Mol Med. 2021;53:52–66.

    Google Scholar 

  139. Huang Z, Cheng S, Jash S, Fierce J, Agudelo A, Higashiyama T, et al. Exploiting sweet relief for preeclampsia by targeting autophagy-lysosomal machinery and proteinopathy. Exp Mol Med. 2024;56:1206–20.

    Google Scholar 

  140. Ma F, Ding N, Xie L, Zhao X, Ma S, Li G, et al. Inhibition of autophagy via 3-methyladenine alleviates the progression of preeclampsia. Acta Biochim Biophys Sin. 2024;57:356–64.

    Google Scholar 

  141. Wang P, Huang C-X, Gao J-J, Shi Y, Li H, Yan H, et al. Resveratrol induces SIRT1-dependent autophagy to prevent H2O2-induced oxidative stress and apoptosis in HTR8/SVneo cells. Placenta. 2020;91:11–8.

    Google Scholar 

  142. Yang F, Mao Y, Tang B, Xu R, Jiang F. Fatty acid binding protein 4 knockdown improves fetal development in rats with gestational diabetes mellitus through modulating autophagy mediated by the PTEN/Akt/mTOR signaling pathway. J Mol Histol. 2025;56:124.

  143. Tao J, Rao Y, Wang J, Tan S, Zhao J, Cao Z, et al. Placental growth factor alleviates hyperglycemia-induced trophoblast pyroptosis by regulating mitophagy. J Obstet Gynaecol Res. 2024;50:1813–29.

    Google Scholar 

  144. Kokkinopoulou I, Papadopoulou A. Thioredoxin-Interacting Protein (TXNIP) in Gestational Diabetes Mellitus. Metabolites. 2025;15:351.

  145. Yang T, Hu J, Zhang L, Liu L, Pan X, Zhou Y, et al. CircCUL1 inhibits trophoblast cell migration and invasion and promotes cell autophagy by sponging hsa-miR-30e-3p in fetal growth restriction via the ANXA1/PI3K/AKT axis. J Biochem Mol Toxicol. 2024;38:e23759.

    Google Scholar 

  146. Mu Y, Wang K, Kang Y, Fang Z, Yu S, Zhou J, et al. TBBPA-BDBPE induces ferroptosis in trophoblasts through chaperone-mediated autophagy of GPX4. Ecotoxicol Environ Saf. 2025;299:118425.

    Google Scholar 

  147. Zhao X, Jiang Y, Ren J, Wang Y, Zhao Y, Feng X. Deciphering the mechanism of Bushen Huoxue Decotion on decidualization by intervening autophagy via AMPK/mTOR/ULK1: A Novel Discovery for URSA treatment. Front Pharm. 2022;13:794938.

    Google Scholar 

  148. Li Z, Dai F, Zhu R, Zhang Y, Chen J, Chen L, et al. Dysregulation of CREB5 impairs decidualization and maternal–fetal interactions by inhibiting autophagy in recurrent spontaneous abortion. Reprod Sci. 2024;31:1983–2000.

    Google Scholar 

  149. Lin R-C, Chao Y-Y, Su M-T, Tsai H-L, Tsai P-Y, Wang C-Y. Upregulation of miR-20b-5p inhibits trophoblast invasion by blocking autophagy in recurrent miscarriage. Cell Signal. 2024;113:110934.

    Google Scholar 

  150. Sun Y, Li G, Kong M, Li J, Wang S, Tan Y. Angelica sinensis polysaccharide as potential protectants against recurrent spontaneous abortion: focus on autophagy regulation. Front Med. 2025;12:1522503.

    Google Scholar 

  151. Li M-Y, Shen H-H, Cao X-Y, Gao X-X, Xu F-Y, Ha S-Y, et al. Targeting a mTOR/autophagy axis: a double-edged sword of rapamycin in spontaneous miscarriage. Biomed Pharmacother. 2024;177:116976.

  152. He W, Zhao Y, Yin L, Du Q, Ren W, Mao L, et al. The transcription factor XBP1 regulates mitochondrial remodel and autophagy in spontaneous abortion. Int Immunopharmacol. 2025;152:114398.

Download references

Acknowledgements

All the figures were created in https://BioRender.com.

Funding

This work was supported by Noncommunicable Chronic Diseases-National Science and Technology Major Project (2024ZD0532100), National High Level Hospital Clinical Research Funding (22cz020401-4811009), Beijing Natural Science Foundation (5244036), Clinical Medicine Plus X-Young Scholars Project of Peking University (PKU2025 PKULCXQ034) and the National Key Research and Development Program of China (2021YFC2700704).

Author information

Authors and Affiliations

  1. Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China

    Shuting Wan, Yuxing Huang & Huixia Yang

  2. Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China

    Shuting Wan, Yuxing Huang & Huixia Yang

Authors
  1. Shuting Wan
    View author publications

    Search author on:PubMed Google Scholar

  2. Yuxing Huang
    View author publications

    Search author on:PubMed Google Scholar

  3. Huixia Yang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

WST conceived the structure, drafted the manuscript, and designed the related figures; HYX and YHX revised this manuscript; and all the authors read and approved the final manuscript. WST and HYX contributed equally.

Corresponding author

Correspondence to Huixia Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Oliana Carnevali

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, S., Huang, Y. & Yang, H. Shedding light on the function of autophagy in complicated pregnancies. Cell Death Dis (2026). https://doi.org/10.1038/s41419-025-08311-7

Download citation

  • Received: 19 June 2025

  • Revised: 24 October 2025

  • Accepted: 24 November 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41419-025-08311-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • About the Editors
  • Open access publishing
  • Contact
  • For Advertisers
  • Press Releases
  • About the Partner
  • Upcoming Conferences

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Cell Death & Disease (Cell Death Dis)

ISSN 2041-4889 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited