Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Highlight
  • Published:

A machine learning approach to predict response to immunotherapy in type 1 diabetes

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Edner, N. M. et al. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat. Immunol. 21, 1244–1255 (2020).

    Article  CAS  Google Scholar 

  2. Todd, J. A. Etiology of type 1 diabetes. Immunity 32, 457–467 (2010).

    Article  CAS  Google Scholar 

  3. Fousteri, G., Ippolito, E., Ahmed, R. & Hamad, A. R. A. Beta-cell specific autoantibodies: are they just an indicator of type 1 diabetes? Curr. Diabet. Rev. 13, 322–329 (2017).

    Article  CAS  Google Scholar 

  4. Chamberlain, N. et al. Rituximab does not reset defective early B cell tolerance checkpoints. J. Clin. Invest. 126, 282–287 (2016).

    Article  Google Scholar 

  5. Crotty, S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    Article  CAS  Google Scholar 

  6. Sherry, N. et al. Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet 378, 487–497 (2011).

    Article  CAS  Google Scholar 

  7. Keymeulen, B. et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia 53, 614–623 (2010).

    Article  CAS  Google Scholar 

  8. Orban, T. et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378, 412–419 (2011).

    Article  CAS  Google Scholar 

  9. Zhao, J. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 25, 462–469 (2019).

    Article  Google Scholar 

  10. Rachid, O., Osman, A., Abdi, R. & Haik, Y. CTLA4-Ig (abatacept): a promising investigational drug for use in type 1 diabetes. Expert Opin. Investig. Drugs 29, 221–236 (2020).

    Article  CAS  Google Scholar 

  11. Ferreira, R. C. et al. IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients. Diabetologia 58, 781–790 (2015).

    Article  CAS  Google Scholar 

  12. Vecchione, A. et al. Reduced PD-1 expression on circulating follicular and conventional FOXP3(+) Treg cells in children with new onset type 1 diabetes and autoantibody-positive at-risk children. Clin. Immunol. 211, 108319 (2020).

    Article  CAS  Google Scholar 

  13. McAdam, A. J. et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J. Immunol. 165, 5035–5040 (2000).

    Article  CAS  Google Scholar 

  14. Xu, H. et al. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496, 523–527 (2013).

    Article  CAS  Google Scholar 

  15. Linsley, P. S., Greenbaum, C. J., Speake, C., Long, S. A. & Dufort, M. J. B lymphocyte alterations accompany abatacept resistance in new-onset type 1 diabetes. JCI Insight 4, e126136 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika Falcone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fousteri, G., Rodrigues, E.M., Giamporcaro, G.M. et al. A machine learning approach to predict response to immunotherapy in type 1 diabetes. Cell Mol Immunol 18, 515–517 (2021). https://doi.org/10.1038/s41423-020-00594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41423-020-00594-4

Search

Quick links